
Going Deep with Spark Streaming

Andrew Psaltis (@itmdata)
Berlin Buzzwords, June 2, 2015

Outline

• Introduction

• DStreams

• Thinking about time

• Recovery and Fault tolerance

• Conclusion

About Me

Andrew Psaltis
Data Engineer @ Shutterstock

Fun outside of Shutterstock:
•  Sometimes ramble here: @itmdata
•  Author of Streaming Data
•  Dreaming about streaming since 2008
•  Conference Speaker
•  Content provider for SkillSoft
•  Lacrosse crazed

Introduction

Why Streaming?

“Without stream processing
there’s no big data and no
Internet of Things” – Dana
Sandu, SQLstream

Why Streaming?

• Operational Efficiency - 1 extra mph for
a locomotive on it’s daily route can lead to
$200M in saving (Norfolk Southern)

• Improving Traffic Safety and Efficiency
– According to EU Commission congestion
in EU urban areas costs ~ €100 billion or 1
percent of EU GDP annually

Our shared problem

Today if a byte of data was 1	

gallon of water we could fill an
average house in 10 seconds, by
2020 it will take only 2.

What is Spark Streaming?

• Provides efficient, fault-tolerant stateful stream
processing

• Provides a simple API for implementing complex
algorithms

•  Integrates with Spark’s batch and interactive processing

•  Integrates with other Spark extensions

High-level Architecture

DStreams

Discretized Streams (DStreams)

• The basic abstraction provided by Spark Streaming
• Continuous series of RDDs

DStreams

• 3 Things we want to do
•  Ingest
• Transform
• Output

Input DStreams (Ingestion)

There are 3 ways to get data in:

•  Basic sources

•  Advanced sources

•  Custom Sources

Basic Input DStreams

•  Basic sources

•  Built-in (file system, socket, Akka actors)

•  Non-built in (Avro, CSV, …)

•  Not reliable

Advanced Input DStreams

•  Advanced sources

•  Twitter, Kafka, Flume, Kinesis, MQTT, ….

•  Require external library

•  Maybe reliable or unreliable

Custom Input DStreams

•  Implement two classes

•  InputDStream

•  Receiver

Custom Input DStream

Custom Receiver

Receiver Reliability

Two types of receivers

•  Unreliable Receiver

•  Reliable Receiver

Receiver Reliability

Unreliable Receiver
•  Simple to implement

•  No fault-tolerance

•  Data loss when receiver fails

Receiver Reliability

Reliable Receiver
•  Complexity depends on the source

•  Strong fault-tolerance guarantees (zero data loss)

•  Data source must support acknowledgement

Input DStream and Receiver

Creating DStreams

2 Ways to create a DStream

•  Input – a streaming source

•  Transforming a DStream

Creating a DStream via Transformation

• Transformations modify data from one DStream to another

• Two general classifications:
•  Standard RDD operations – map, countByValue,

reduceByKey, join,…

•  Stateful operations – window, updateStateByKey,
transform, countByValueAndWindow, …

map

Input DStream Output DStream

Transforming the input - Standard Operation

val	
 myStream	
 =	
 createCustomStream(streamingContext)	

val	
 events	
 =	
 myStream.map(….)

batch	
 @	
 t+1	
 batch	
 @	
 t	
 batch	
 @	
 t+2	

My	
 InputDStream	

	
 	
 MyReceiver	

map map map

events	
 DStream	

Stateful Operation - UpdateStateByKey

Provides a way for you to maintain arbitrary state
while continuously updating it.

• For example – In-Session Advertising, Tracking
twitter sentiment

Stateful Operation - UpdateStateByKey

Need to do two things to leverage it:
• Define the state – this can be any arbitrary data
• Define the update function – this needs to

know how to update the state using the
previous state and new values

Requires Checkpoint to be configured

Using updateStateByKey

Maintain per-user mood as state, and update it with
his/her tweets	
 	

	

moods	
 =	
 tweets.updateStateByKey(tweet	
 =>	
 updateMood(tweet))	

updateMood(newTweets,	
 lastMood)	
 =>	
 newMood	

	

tweets	

t-­‐1	
 t	
 t+1	
 t+2	
 t+3	

moods	

Transform

Allows arbitrary RDD-to-RDD functions to be
applied on a DStream
	

transform	
 (transformFunc:	
 RDD[T]	
 =>	
 RDD[U]):	
 DStream[U]	

	

Example: We want to eliminate “noise” words from
crawled documents:

val	
 noiseWordRDD	
 =	
 ssc.sparkContext.newAPIHadoopRDD(...)	

val	
 cleanedDStream	
 =	
 crawledCorpus.transform(rdd	
 =>	
 {	

	
 	
 rdd.join(noiseWordRDD).filter(...)})	

Joining streams

Allows you to combine two DStreams that share a
key and produce a new DStream
	

join(other:	
 DStream(K,V)):	
 DStream[K,(V,W)]	

	

Example: We want to group Fitbit and MapMyRun
streams

val	
 musicBits	
 =	
 fitBitStream.join(mapMyRunStream)	

Outputting data
val	
 myStream	
 =	
 createCustomStream(streamingContext)	

val	
 events	
 =	
 myStream.map(….)
events.countByValue().foreachRDD{…}	

batch	
 @	
 t+1	
 batch	
 @	
 t	
 batch	
 @	
 t+2	

myStream	

	
 	
 Custom	
 Receiver	

map map map
events	
 DStream	

foreachRDD* foreachRDD* foreachRDD*

From Streaming Program to Spark jobs

M

T

C

FE

DStream	
 Graph	

M

B

C

A

RDD	
 Graph	

Block	
 RDD	
 with	

data	
 received	
 in	

last	
 batch	
 interval	

1	
 Spark	
 job	

myStream	
 =	
 createCustomStream

events	
 =	
 myStream.map(…)	

events.countByValue()

.foreachRDD{…}	

Thinking about time

Thinking about time

• Windowing – Tumbling, Sliding
• Stream time vs. Event time
• Out of order data

Windowing

• Common Types
• Tumbling
• Sliding

Tumbling (Count) Windowing

Tumbling (temporal) Windowing

Sliding Window

Spark Streaming -- Sliding Windowing

• Two types supported:
• Non-Incremental
•  Incremental

Non-Incremental Sliding Windowing
reduceByKeyAndWindow((a,b)=>(a + b),Seconds(5), Seconds(1))

Incremental Sliding Windowing

reduceByKeyAndWindow((a,b) => (a + b), (a,b) => (a-b),
Seconds(5), Seconds(1))

More thinking about time

 Stream time vs. Event time
• Stream time -- the time when the record

arrives into the streaming system.
• Event time – the time that the event was

generated, not when it entered the system.
• Spark Streaming uses stream time

 Out of order data
• Does it matter to your application?
• How do you deal with it?

Handling Out of Order Data
Imagine we want to track ad impressions between
time t and t +1

Continuous Analytics Over Discontinuous Streams
http://www.eecs.berkeley.edu/~franklin/Papers/sigmod10krishnamurthy.pdf

Recovery and Fault Tolerance

Recovery

• Checkpointing

• Metadata checkpointing

• Data checkpointing

Recovery

Without

With

Recovery

• Too frequent: HDFS writing will slow things down

• Too infrequent: Lineage and task sizes grow

• Default setting: Multiple of batch interval at least 10
seconds

• Recommendation: checkpoint interval of 5 - 10
times of sliding interval

Fault Tolerance
•  All properties of RDDs still apply

•  We are trying to protect two things
•  Failure of a Worker
•  Failure of the Driver Node

•  Semantics
•  At most once
•  At least once
•  Exactly once

•  Where we need to think about it
•  Receivers
•  Transformations
•  Output

Conclusion

• Introduction

• High-level Architecture

• DStreams

• Thinking about time

• Recovery and Fault tolerance

Thank y u

Andrew Psaltis
@itmdata
psaltis.andrew@gmail.com
https://www.linkedin.com/in/andrewpsaltis

