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About Me

Andrew Psaltis

B Data Engineer @ Shutterstock

Fun outside of Shutterstock:

e Sometimes ramble here: @itmdata
Author of Streaming Data

* Dreaming about streaming since 2008
e Conference Speaker

e Content provider for SkillSoft
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Why Streaming?

“Without stream processing
there’s no big data and no
Internet of Things” — Dana
Sandu, SQLstream
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Why Streaming?

* Operational Efficiency - | extra mph for

a locomotive on it’s daily route can lead to
$200M in saving (Norfolk Southern)

* Improving Traffic Safety and Efficiency
— According to EU Commission congestion
in EU urban areas costs ~ €100 billion or |
percent of EU GDP annually
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Our shared problem

Today if a byte of data was 1
gallon of water we could fill an
average house in 10 seconds, by
2020 it will take only 2.
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What is Spark Streaming?

Spark
Streaming

MLIib GraphX

SparkSQL

Apache Spark

®* Provides efficient, fault-tolerant stateful stream

processing

® Provides a simple API for implementing complex

algorithms

* [ntegrates with Spark’s batch and interactive processing

* [ntegrates with other Spark extensions
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High-level Architecture

Handles scheduling
the jobs to run on

the workers Spark Worker )< - —><Data sOurce(sD

Lw /(Spark Worker )< - —><Data Souroe(s))

Your program
Contains Spark Streaming <—>CSpark Worker )< - —><Data Source( sD
Context (Spark Client)

\(Spark Worker )<= - —><Data Source(s))

Spark Worker )< - —><Data Source(s)>

Where your
algorithm runs

The streaming data source
(Twitter, loT, Network, File,..)
and output store
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Discretized Streams (DStreams)

® The basic abstraction provided by Spark Streaming
® Continuous series of RDDs

oo o) (0 >
VT

Generated each batch
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DStreams

* 3 Things we want to do
* Ingest
* Transform
e Output
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Input DStreams (Ingestion)

There are 3 ways to get data in:
® Basic sources
e Advanced sources

® (Custom Sources
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Basic Input DStreams

® PBasic sources

® Built-in (file system, socket, Akka actors)
* Non-built in (Avro, CSV, ...)

* Not reliable
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Advanced Input DStreams

* Advanced sources
* Twitter, Kafka, Flume, Kinesis, MQTT, ....
* Require external library

* Maybe reliable or unreliable
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Custom Input DStreams

* Implement two classes
® |nputDStream

® Receiver

shuttersteck



Custom Input DStream

class CustomInputDStream(
@transient ssc_ : StreamingContext,
storageLevel: StoragelLevel
) extends ReceiverInputDStream[String](ssc_) {

Retyms the receiver def getReceiver(): Receiver[String] = {
that is sent to workers | » new CustomReceiver(storageLevel)

LN P
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Custom Receiver

Start threads, open class CustomReceiver(storagelLevel: StoragelLevel)
sockets, etc..

MUST BE non-blocking

T _» def onStart() {

by

extends Receiver([String] (storageLevel){

Cleanup everything

started in onStart.
:ef onStop() {/\ Stops receiving data

//Defined in Receiver class
def store(...) {

}
} t~—/’/////~_\\\\\\\
Call store (item,
buffer, iterator)
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Receiver Reliability

Two types of receivers
e Unreliable Recelver
* Reliable Recelver
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Receiver Reliability

Unreliable Receiver
* Simple to implement
* No fault-tolerance

e Data loss when receiver fails
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Receiver Reliability

Reliable Receiver
* Complexity depends on the source
* Strong fault-tolerance guarantees (zero data loss)

® Data source must support acknowledgement
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Input DStream and Receiver

_ Receive Data
Receiver N
. Sent Spark Worker
SUbr_mt Input Receiver
your job Block manager (_@, .,
Source

l/1 @\/\ Store

O Spark Master Blocks

Task Scheduler <6>
Create Input Block Tracker Replicate

Get Receiver Blocks

soabioer | ~op
Block ID’s

Block manager
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Creating DStreams

2 Ways to create a DStream
® |nput — a streaming source

* Transforming a DStream

shuttersteck



Creating a DStream via Transformation

* Transformations modify data from one DStream to another

— g )

Input DStream Output DStream

* Two general classifications:

e Standard RDD operations — map, countByValue,
reduceByKey, join,...

e Stateful operations — window, updateStateByKey,
transform, countByValueAndWindowy, ...
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Transforming the input - Standard Operation

val myStream = createCustomStream(streamingContext)
val events = myStream.map(...)

MyReceiver

My InputDStream

events DStream
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Stateful Operation - UpdateStateByKey

Provides a way for you to maintain arbitrary state
while continuously updating it.

* For example — In-Session Advertising, Tracking
twitter sentiment
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Stateful Operation - UpdateStateByKey

Need to do two things to leverage it:

* Define the state — this can be any arbitrary data

* Define the update function — this needs to
know how to update the state using the
previous state and new values

Requires Checkpoint to be configured
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Using updateStateByKey

Maintain per-user mood as state, and update it with
his/her tweets

moods = tweets.updateStateByKey(tweet => updateMood(tweet))
updateMood(newTweets, lastMood) => newMood

t-1 t t+1 t+2 t+3

tweets

moods
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Transform

Allows arbitrary RDD-to-RDD functions to be
applied on a DStream

transform (transformFunc: RDD[T] => RDD[U]): DStream[U]

Example: We want to eliminate “noise” words from
crawled documents:

val noiselWordRDD = ssc.sparkContext.newAPIHadoopRDD(...)
val cleanedDStream = crawledCorpus.transform(rdd => {
rdd.join(noiseWordRDD).filter(...)})
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Joining streams

Allows you to combine two DStreams that share a
key and produce a new DStream

join(other: DStream(K,V)): DStream[K, (V,W)]

Example: We want to group Fitbit and MapMyRun
streams

val musicBits = fitBitStream.join(mapMyRunStream)
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Outputting data

val myStream = createCustomStream(streamingContext)
val events = myStream.map(...)
events.countByValue().foreachRDD{..}

Custom Receiver (g Beeew [memend ()

map map map
events DStream v
e e e e = ——,——d

foreachRDD* | foreachRDD* | foreachRDD*
v v

shuttersteck



From Streaming Program to Spark jobs

DStream Graph RDD Graph
Block RDD with
data receivedin — B

myStream createCustomStream T .
I last batch interval ‘|‘

E— I

events = myStream.map(..) M

A c
events.countByValue() C

+ 1 Spark job — A
.foreachRDD{...} FE
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Thinking about time
* Windowing — Tumbling, Sliding

® Stream time vs. Event time
® Out of order data
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Windowing

* Common Types

e Tumbling
e Sliding
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Tumbling (Count) Windowing

Window length
Sliding interval

A

/_,_/ ‘%

\

Time (in seconds)

Tumbling count-window
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Tumbling (temporal) Windowing

Window length

Sliding interval

/— _'/I\'_ \

0.0.0 O O 0

| | | | >
0 1 2 3 4

Time (in seconds)

Tumbling temporal window
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Sliding Window

Window length
A

2 T
Sliding interval

/
e

- )

| | | il
0 1 2 3

Time (in seconds)
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Spark Streaming -- Sliding Windowing

* Two types supported:

* Non-Incremental
* |Incremental
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Non-Incremental Sliding Windowing

r educeByKeyAndW ndow( (a, b) =>(a + b), Seconds(5), Seconds(1))

t -1

t +1

t+2

t+3

t+4

interval sliding
clicks counts counts
’———\\ l__\ I__\
. v v

- -8 ' shuttersteck



Incremental Sliding Windowing

reduceByKeyAndW ndow( (a, b) => (a + b), (a,b) => (a-b),
Seconds(5), Seconds(1))

interval sliding
clicks counts counts
t -1 N
t (:_____“)
t +1 ("“)
t +2 s \)
t +3 o

t +4 a—e shutterste.ck




More thinking about time

Stream time vs. Event time

e Stream time -- the time when the record
arrives into the streaming system.

e Event time — the time that the event was
generated, not when it entered the system.

 Spark Streaming uses stream time

Out of order data

* Does it matter to your application?
* How do you deal with it?
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Handling Out of Order Data

Imagine we want to track ad impressions between
timetandt +/

interval interval
counts counts
[t,t+1) [t,t+1)

000 0060,00000 0,0

| i
t -1 t t+1 t+2 t+3 t+4 t+5
Sliding interval
Continuous Analytics Over Discontinuous Streams ShUl‘terSt';Ck

http://www.eecs.berkeley.edu/~franklin/Papers/sigmod | Okrishnamurthy.pdf







Recovery

* Checkpointing

e Metadata checkpointing

e Data checkpointing

state @—0 ()

s

@0, ®

-»

00,00, 0

-8

-

-1 t t+1

t+2

t+3

t+4

t+5

shuttersteck



Recovery

state O——0 2 | 2 » - 2 |

00,0 ¢ 00,00, 0

t-1 I t +1 t+2 t+3 t+4 t+5

data 1O 9,00 0@, @ 0,00, 0
t-1 t t+1 t+2 t +3 t+4 t+5
With shutterstr.ck




Recovery

* Too frequent: HDFS writing will slow things down
* Too infrequent: Lineage and task sizes grow

* Default setting: Multiple of batch interval at least |10
seconds

* Recommendation: checkpoint interval of 5 - |0
times of sliding interval
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Fault Tolerance

* All properties of RDDs still apply

®* We are trying to protect two things

e Failure of a Worker
e Failure of the Driver Node

® Semantics

e At most once
e At least once
e Exactly once

* Where we need to think about it

* Receivers
* Transformations
e Output
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Conclusion

® Introduction

* High-level Architecture
* DStreams

® Thinking about time

® Recovery and Fault tolerance
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@itmdata
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