Going Deep with Spark Streaming

shutterstr.ck

Outline

® [ntroduction

® DStreams

® Thinking about time

® Recovery and Fault tolerance

® Conclusion

shuttersteck

About Me

Andrew Psaltis

B Data Engineer @ Shutterstock

Fun outside of Shutterstock:

e Sometimes ramble here: @itmdata
Author of Streaming Data

* Dreaming about streaming since 2008
e Conference Speaker

e Content provider for SkillSoft

e Lacrosse crazed shutterstr.ck

Why Streaming?

“Without stream processing
there’s no big data and no
Internet of Things” — Dana
Sandu, SQLstream

shuttersteck

Why Streaming?

* Operational Efficiency - | extra mph for

a locomotive on it’s daily route can lead to
$200M in saving (Norfolk Southern)

* Improving Traffic Safety and Efficiency
— According to EU Commission congestion
in EU urban areas costs ~ €100 billion or |
percent of EU GDP annually

shutterste.ck

Our shared problem

Today if a byte of data was 1
gallon of water we could fill an
average house in 10 seconds, by
2020 it will take only 2.

shuttersteck

What is Spark Streaming?

Spark
Streaming

MLIib GraphX

SparkSQL

Apache Spark

®* Provides efficient, fault-tolerant stateful stream

processing

® Provides a simple API for implementing complex

algorithms

* [ntegrates with Spark’s batch and interactive processing

* [ntegrates with other Spark extensions

shuttersteck

High-level Architecture

Handles scheduling
the jobs to run on

the workers Spark Worker)< - —><Data sOurce(sD

Lw /(Spark Worker)< - —><Data Souroe(s))

Your program
Contains Spark Streaming <—>CSpark Worker)< - —><Data Source(sD
Context (Spark Client)

\(Spark Worker)<= - —><Data Source(s))

Spark Worker)< - —><Data Source(s)>

Where your
algorithm runs

The streaming data source
(Twitter, loT, Network, File,..)
and output store

shuttersteck

Discretized Streams (DStreams)

® The basic abstraction provided by Spark Streaming
® Continuous series of RDDs

oo o) (0 >
VT

Generated each batch

shuttersteck

DStreams

* 3 Things we want to do
* Ingest
* Transform
e Output

shuttersteck

Input DStreams (Ingestion)

There are 3 ways to get data in:
® Basic sources
e Advanced sources

® (Custom Sources

shuttersteck

Basic Input DStreams

® PBasic sources

® Built-in (file system, socket, Akka actors)
* Non-built in (Avro, CSV, ...)

* Not reliable

shuttersteck

Advanced Input DStreams

* Advanced sources
* Twitter, Kafka, Flume, Kinesis, MQTT,
* Require external library

* Maybe reliable or unreliable

shuttersteck

Custom Input DStreams

* Implement two classes
® |nputDStream

® Receiver

shuttersteck

Custom Input DStream

class CustomInputDStream(
@transient ssc_ : StreamingContext,
storageLevel: StoragelLevel
) extends ReceiverInputDStream[String](ssc_) {

Retyms the receiver def getReceiver(): Receiver[String] = {
that is sent to workers | » new CustomReceiver(storageLevel)

LN P

shuttersteck

Custom Receiver

Start threads, open class CustomReceiver(storagelLevel: StoragelLevel)
sockets, etc..

MUST BE non-blocking

T _» def onStart() {

by

extends Receiver([String] (storageLevel){

Cleanup everything

started in onStart.
:ef onStop() {/\ Stops receiving data

//Defined in Receiver class
def store(...) {

}
} t~—/’/////~_\\\\\\\
Call store (item,
buffer, iterator)

shuttersteck

Receiver Reliability

Two types of receivers
e Unreliable Recelver
* Reliable Recelver

shuttersteck

Receiver Reliability

Unreliable Receiver
* Simple to implement
* No fault-tolerance

e Data loss when receiver fails

shuttersteck

Receiver Reliability

Reliable Receiver
* Complexity depends on the source
* Strong fault-tolerance guarantees (zero data loss)

® Data source must support acknowledgement

shuttersteck

Input DStream and Receiver

_ Receive Data
Receiver N
. Sent Spark Worker
SUbr_mt Input Receiver
your job Block manager (_@, .,
Source

l/1 @\/\ Store

O Spark Master Blocks

Task Scheduler <6>
Create Input Block Tracker Replicate

Get Receiver Blocks

soabioer | ~op
Block ID’s

Block manager

shuttersteck

Creating DStreams

2 Ways to create a DStream
® |nput — a streaming source

* Transforming a DStream

shuttersteck

Creating a DStream via Transformation

* Transformations modify data from one DStream to another

— g)

Input DStream Output DStream

* Two general classifications:

e Standard RDD operations — map, countByValue,
reduceByKey, join,...

e Stateful operations — window, updateStateByKey,
transform, countByValueAndWindowy, ...

shuttersteck

Transforming the input - Standard Operation

val myStream = createCustomStream(streamingContext)
val events = myStream.map(...)

MyReceiver

My InputDStream

events DStream

shuttersteck

Stateful Operation - UpdateStateByKey

Provides a way for you to maintain arbitrary state
while continuously updating it.

* For example — In-Session Advertising, Tracking
twitter sentiment

shuttersteck

Stateful Operation - UpdateStateByKey

Need to do two things to leverage it:

* Define the state — this can be any arbitrary data

* Define the update function — this needs to
know how to update the state using the
previous state and new values

Requires Checkpoint to be configured

shuttersteck

Using updateStateByKey

Maintain per-user mood as state, and update it with
his/her tweets

moods = tweets.updateStateByKey(tweet => updateMood(tweet))
updateMood(newTweets, lastMood) => newMood

t-1 t t+1 t+2 t+3

tweets

moods

shuttersteck

Transform

Allows arbitrary RDD-to-RDD functions to be
applied on a DStream

transform (transformFunc: RDD[T] => RDD[U]): DStream[U]

Example: We want to eliminate “noise” words from
crawled documents:

val noiselWordRDD = ssc.sparkContext.newAPIHadoopRDD(...)
val cleanedDStream = crawledCorpus.transform(rdd => {
rdd.join(noiseWordRDD).filter(...)})

shuttersteck

Joining streams

Allows you to combine two DStreams that share a
key and produce a new DStream

join(other: DStream(K,V)): DStream[K, (V,W)]

Example: We want to group Fitbit and MapMyRun
streams

val musicBits = fitBitStream.join(mapMyRunStream)

shuttersteck

Outputting data

val myStream = createCustomStream(streamingContext)
val events = myStream.map(...)
events.countByValue().foreachRDD{..}

Custom Receiver (g Beeew [memend ()

map map map
events DStream v
e e e e = ——,——d

foreachRDD* | foreachRDD* | foreachRDD*
v v

shuttersteck

From Streaming Program to Spark jobs

DStream Graph RDD Graph
Block RDD with
data receivedin — B

myStream createCustomStream T .
I last batch interval ‘|‘

E— I

events = myStream.map(..) M

A c
events.countByValue() C

+ 1 Spark job — A
.foreachRDD{...} FE

shuttersteck

Thinking about time
* Windowing — Tumbling, Sliding

® Stream time vs. Event time
® Out of order data

shuttersteck

Windowing

* Common Types

e Tumbling
e Sliding

shuttersteck

Tumbling (Count) Windowing

Window length
Sliding interval

A

/_,_/ ‘%

\

Time (in seconds)

Tumbling count-window

shuttersteck

Tumbling (temporal) Windowing

Window length

Sliding interval

/— _'/I\'_ \

0.0.0 O O 0

| | | | >
0 1 2 3 4

Time (in seconds)

Tumbling temporal window

shuttersteck

Sliding Window

Window length
A

2 T
Sliding interval

/
e

-)

| | | il
0 1 2 3

Time (in seconds)

shuttersteck

Spark Streaming -- Sliding Windowing

* Two types supported:

* Non-Incremental
* |Incremental

shuttersteck

Non-Incremental Sliding Windowing

r educeByKeyAndW ndow((a, b) =>(a + b), Seconds(5), Seconds(1))

t -1

t +1

t+2

t+3

t+4

interval sliding
clicks counts counts
’———\\ l__\ I__\
. v v

- -8 ' shuttersteck

Incremental Sliding Windowing

reduceByKeyAndW ndow((a, b) => (a + b), (a,b) => (a-b),
Seconds(5), Seconds(1))

interval sliding
clicks counts counts
t -1 N
t (:_____“)
t +1 ("“)
t +2 s \)
t +3 o

t +4 a—e shutterste.ck

More thinking about time

Stream time vs. Event time

e Stream time -- the time when the record
arrives into the streaming system.

e Event time — the time that the event was
generated, not when it entered the system.

 Spark Streaming uses stream time

Out of order data

* Does it matter to your application?
* How do you deal with it?

shuttersteck

Handling Out of Order Data

Imagine we want to track ad impressions between
timetandt +/

interval interval
counts counts
[t,t+1) [t,t+1)

000 0060,00000 0,0

| i
t -1 t t+1 t+2 t+3 t+4 t+5
Sliding interval
Continuous Analytics Over Discontinuous Streams ShUl‘terSt';Ck

http://www.eecs.berkeley.edu/~franklin/Papers/sigmod | Okrishnamurthy.pdf

Recovery

* Checkpointing

e Metadata checkpointing

e Data checkpointing

state @—0 ()

s

@0, ®

-»

00,00, 0

-8

-

-1 t t+1

t+2

t+3

t+4

t+5

shuttersteck

Recovery

state O——0 2 | 2 » - 2 |

00,0 ¢ 00,00, 0

t-1 I t +1 t+2 t+3 t+4 t+5

data 1O 9,00 0@, @ 0,00, 0
t-1 t t+1 t+2 t +3 t+4 t+5
With shutterstr.ck

Recovery

* Too frequent: HDFS writing will slow things down
* Too infrequent: Lineage and task sizes grow

* Default setting: Multiple of batch interval at least |10
seconds

* Recommendation: checkpoint interval of 5 - |0
times of sliding interval

shuttersteck

Fault Tolerance

* All properties of RDDs still apply

®* We are trying to protect two things

e Failure of a Worker
e Failure of the Driver Node

® Semantics

e At most once
e At least once
e Exactly once

* Where we need to think about it

* Receivers
* Transformations
e Output

shuttersteck

Conclusion

® Introduction

* High-level Architecture
* DStreams

® Thinking about time

® Recovery and Fault tolerance

shuttersteck

r

Thank y ‘Qﬂu
J

Andrew Psaltis

@itmdata

psaltis.andrew@gmail.com
https://www.linkedin.com/in/andrewpsaltis

