Two sides of the same
Fabian Hueske CO' n ?

fhueske@apache.org
@fhueske

ﬁ} Streaming Analytics &
df/ CEP
E

Till Rohrmann
trohnrmann@apache.or

v @stsffap dataArtisa ns

Streams are Everywhere

= Most data is continuously produced as
stream

—

D o
" Processing data as it arrives™
is becoming very popularqg"u@ >

= Many diverse applications® %~
and use cases

Complex Event Processing y

" Analyzing a stream of events and drawing

conclusions
* Detect patterns and assemble new events

" Applications
* Network intrusion
* Process monitoring
* Algorithmic trading

" Demanding requirements on stream processor

* Low latency!
* Exactly-once semantics & event-time support

Batch Analytics

" The batch approach to data analytics

'-l?qusag’r.‘ov._s Periodic ETL Analytical
] ,
g U

N

Streaming Analytics

* Online aggregation of streams
* No delay - Continuous results

= Stream analytics subsumes batch analytics
* Batch is a finite stream

* Demanding requirements on stream processor
* High throughput
* Exactly-once semantics
* Event-time & advanced window support

Apache Flink™ i

= Platform for scalable stream processing

" Meets requirements of CEP and stream analytics
* Low latency and high throughput
* Exactly-once semantics
* Event-time & advanced windowing

" Core DataStream API available for Java & Scala

This Talk 1s About l.

" Flink’s new APIs for CEP and Stream Analytics
* DSL to define CEP patterns and actions
» Stream SQL to define queries on streams

" Integration of CEP and Stream SQL

" Early stage [] Work in progress

Use Case

Tracking an Order Process

Order Fulfillment Scenario l.

nle % | MW

Catpiars (1:} Deliweredh @\ ﬁ) Wacdrouse

\@EP o~ S
| 9

Order Events l.

" Process is reflected in a stream of order events

" Order(orderld, tStam p, “received”)
* Shipm ent(orderd, tStam p, “shipped”)
"Delivery(orderd, tStam p, “delivered”)

" orderHd: Identifies the order
" tStam p: Time at which the event happened

10

Stream Analytics
Aggregating Massive
Streams

Stream Analytics i

" Traditional batch analytics
* Repeated queries on finite and changing data sets
* Queries join and aggregate large data sets

= Stream analytics

* “Standing” query produces continuous results
from infinite input stream

* Query computes aggregates on high-volume streams

= How to compute aggregates on infinite streams?

12

Compute Aggregates on Streams L.

" Split infinite stream into finite “windows”

* Split usually by time Seusec > 9, 6,8, 4,7, 5,8, 4,2,43,2, 5
= Tumbling windows e Bt I R T
* Fixed size & consecutive cum =27)22 5 = G,
= Sliding windows A | IR | AP
- Fixed size & may overlap”'*)“ gy 3 ﬂﬂuﬁi‘zl
Sam > % 2 n s & —> ot

" Event time mandatory for correct & consistent
results!

13

Example: Count Orders by Hour ..

® @ C G
A=y QR =) 208 % 8o & =P
Y | -
{») 2 1 2;()]\///1@ A ..

Ihe@0 - \4:57 1500 - \5:59 \6:00 -\g 59 13 00- 17 59

14

Example: Count Orders by Hour L.

SELECT STREAM
TUMBLE_START (tStamp, INTERVAL ‘1’ HOUR) AS hour,
COUNT (*) AS cnt

FROM events

WHERE
status = ‘received’

GROUP BY
TUMBLE (tStamp, INTERVAL ‘1’ HOUR)

15

Stream SQL Architecture

I -
" Flink features SQL on mme Ay, —%% N 2| =
static and streaming _c_un_J LEF | 4 % \Qu.uy |
tables v N & o
AR\ ‘ kC Ci A
i-&L:QM(‘ EO | Ruga .I 51\(9:&«]
" Parsing and optimization
by Apache Calcite @ \;‘:jm <
t __
" SQL queries are translated ﬁi | ——w\égrl*‘—“ [gt%“f;‘l
into native Flink programs ~—= P
Plawn ‘ | _Dlag ____J

Complex Event Processing

Pattern Matching on
Streams

17

Real-time Warnings

® Ocder Ko
/‘::%\m& : ceived
2
“ulg ? Y\ ol
:Cu,doma\ ' ’Ké}v\

L ? @wﬁhwe

~ / ®©co\(3u"°\
S
P 1
L

A\

18

CEP to the Rescue

" Define processing and delivery intervals (SLAS)

" ProcessSucc(orderd, tStam p,duration)
" ProcessWam(orderd, tStam p)
" DelverySucc(orderd, tStam p,duration)
"DeliveryWam(orderd, tStam p)

= orderHd: Identifies the order
* tStam p: Time when the event happened
* duration: Duration of the processing/delivery

19

CEP Example i

XK\ A /\W/‘

E‘?@E@B@@@@m@g

o N

20

Processing: Order [] Shipment g

val processingPattern = Pattern
.begin[Event] ("received") . subtype (classOf [Order])
.followedBy ("shipped") .where (_.status == "shipped")

.within (Time .hours (1)) @ @ @

val processingPatternStream = CEP.pattern
input .keyBy ("orderId"), |
|

processingPattern)
val procResult: DataStream[Either[ProcessWarn, ProcessSucc]] = | /—‘ \.
l

processingPatternStream.select { , -
(pP, timestamp) => // Timeout handler G \ |

ProcessWarn (pP ("received") .orderId, timestamp)
} oo l \
fP => // Select function ‘ > A
ProcessSucc (!
fP ("received") .orderId, fP ("shipped") .tStamp,
fP ("shipped") .tStamp - fP ("received") .tStamp)

21

Integrated Stream Analytics with CEP
.. and both at the same time!

Count Delayed Shipments

I

)]

y o
& ot
2 (I m-
t B O\
P\ ' "
U | A _
Vo \
b | _
\y ' i
. | |
, R |
S |
& |-
] | !
,F.L. ,_ ; Z—
B . '
ot
G- 0 U
4 i o "
no :
Q- A)
g | "
o .
O | |
B |
.Hﬁ —
¢ _

gk Jeiwint St

Compute Avg Processing Time L.

R R A Yk @l.m@'fﬂ@ @@am@Mf@@W&@-mﬁ;mam@@w@u

=8 o---9 .,---o

o

I

- — - -
----n Pl .
> -=- -0 e —

=
&

24

CEP + Stream SQL N

// complex event processing result
val delResult: DataStream[Either [DeliveryWarn, DeliverySucc]] = ..

val delWarn: DataStream|[DeliveryWarn] = delResult.flatMap(_.left.toOption)

val deliveryWarningTable: Table = delWarn.toTable (tableEnv)
tableEnv.registerTable ("deliveryWarnings'", deliveryWarningTable)

// calculate the delayed deliveries per day
val delayedDeliveriesPerDay = tableEnv.sql (
"""SELECT STREAM
| TUMBLE_START (tStamp, INTERVAL ‘1’ DAY) AS day,
| COUNT(*) AS cnt
| FROM deliveryWarnings
| GROUP BY TUMBLE (tStamp, INTERVAL ‘1’ DAY)""'" . stripMargin)

25

CEP-enriched Stream SQL

SELECT
TUMBLE_START (tStamp, INTERVAL 'l' DAY) as day,

AVG (duration) as avgDuration
FROM (

// CEP pattern
SELECT (b.tStamp - a.tStamp) as duration, b.tStamp as tStamp

FROM inputs

PATTERN
a FOLLOW BY b PARTITION BY orderId ORDER BY tStamp

WITHIN INTERVAL 'l’ HOUR
WHERE
a.status = ‘received’ AND b.status = ‘shipped’

)
GROUP BY
TUMBLE (tStamp, INTERVAL 'l’ DAY)

26

Conclusion ;.

" Apache Flink handles CEP and analytical
workloads

* Apache Flink offers intuitive APIs

"= New class of applications by CEP and
Stream SQL integration []

27

Flink CALL FOR SUBMISSIONS ~ ABOUT ~ SPONSORING REGISTRATION

12-14 SEP 2016
BERLIN

CALL FOR SUBMISSIONS

Flink Forward 2016, Berlin
Submission deadline: June 30, 2016
Early bird deadline: July 15, 2016
www.flink-forward.org

http://www.flink-forward.org/

dataArtisans

We are hiring!
data-artisans.com/careers

	Folie 1
	Streams are Everywhere
	Complex Event Processing
	Batch Analytics
	Streaming Analytics
	Apache Flink™
	This Talk is About
	Tracking an Order Process
	Order Fulfillment Scenario
	Order Events
	Aggregating Massive Streams
	Stream Analytics
	Compute Aggregates on Streams
	Example: Count Orders by Hour
	Example: Count Orders by Hour
	Stream SQL Architecture
	Pattern Matching on Streams
	Real-time Warnings
	CEP to the Rescue
	CEP Example
	Processing: Order  Shipment
	… and both at the same time!
	Count Delayed Shipments
	Compute Avg Processing Time
	CEP + Stream SQL
	CEP-enriched Stream SQL
	Conclusion
	Folie 28
	Folie 29

