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Streams are Everywhere

= Most data is continuously produced as
stream

—

D o
" Processing data as it arrives™
is becoming very popularqg"u@ >

= Many diverse applications® %~
and use cases




Complex Event Processing y

" Analyzing a stream of events and drawing

conclusions
* Detect patterns and assemble new events

" Applications
* Network intrusion
* Process monitoring
* Algorithmic trading

" Demanding requirements on stream processor

* Low latency!
* Exactly-once semantics & event-time support



Batch Analytics

" The batch approach to data analytics
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Streaming Analytics

* Online aggregation of streams
* No delay - Continuous results

= Stream analytics subsumes batch analytics
* Batch is a finite stream

* Demanding requirements on stream processor
* High throughput
* Exactly-once semantics
* Event-time & advanced window support



Apache Flink™ i

= Platform for scalable stream processing

" Meets requirements of CEP and stream analytics
* Low latency and high throughput
* Exactly-once semantics
* Event-time & advanced windowing

" Core DataStream API available for Java & Scala



This Talk 1s About l.

" Flink’s new APIs for CEP and Stream Analytics
* DSL to define CEP patterns and actions
» Stream SQL to define queries on streams

" Integration of CEP and Stream SQL

" Early stage [] Work in progress



Use Case

Tracking an Order Process



Order Fulfillment Scenario l.
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Order Events l.

" Process is reflected in a stream of order events

" Order(orderld, tStam p, “received”)
* Shipm ent(orderd, tStam p, “shipped”)
"Delivery(orderd, tStam p, “delivered”)

" orderHd: Identifies the order
" tStam p: Time at which the event happened
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Stream Analytics
Aggregating Massive
Streams



Stream Analytics i

" Traditional batch analytics
* Repeated queries on finite and changing data sets
* Queries join and aggregate large data sets

= Stream analytics

* “Standing” query produces continuous results
from infinite input stream

* Query computes aggregates on high-volume streams

= How to compute aggregates on infinite streams?
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Compute Aggregates on Streams L.

" Split infinite stream into finite “windows”

* Split usually by time Seusec > 9, 6,8, 4,7, 5,8, 4,2,43,2, 5
= Tumbling windows e Bt I R T
* Fixed size & consecutive cum =27 )22 5 = G,
= Sliding windows A | IR | AP
- Fixed size & may overlap”'* )“ gy 3 ﬂﬂuﬁi‘zl
Sam > % 2 n s & —> ot

" Event time mandatory for correct & consistent
results!

13



Example: Count Orders by Hour ..
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Example: Count Orders by Hour L.

SELECT STREAM
TUMBLE_START (tStamp, INTERVAL ‘1’ HOUR) AS hour,
COUNT (*) AS cnt

FROM events

WHERE
status = ‘received’

GROUP BY
TUMBLE (tStamp, INTERVAL ‘1’ HOUR)
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Stream SQL Architecture

I -
" Flink features SQL on mme Ay, —%% N 2| =
static and streaming _c_un_J LEF | 4 % \Qu.uy |
tables v N & o
AR\ ‘ kC Ci A
i-&L:QM( ‘ EO | Ruga .I 51\(9:&«]
" Parsing and optimization
by Apache Calcite @ \;‘:jm <
t __
" SQL queries are translated ﬁi | ——w\égrl\*‘—“ [gt%“f;‘l
into native Flink programs ~—= P
Plawn ‘ | _Dlag ____J




Complex Event Processing

Pattern Matching on
Streams
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Real-time Warnings
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CEP to the Rescue

" Define processing and delivery intervals (SLAS)

" ProcessSucc(orderd, tStam p,duration)
" ProcessWam(orderd, tStam p)
" DelverySucc(orderd, tStam p,duration)
"DeliveryWam(orderd, tStam p)

= orderHd: Identifies the order
* tStam p: Time when the event happened
* duration: Duration of the processing/delivery
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CEP Example i
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Processing: Order [] Shipment g

val processingPattern = Pattern
.begin[Event] ("received") . subtype (classOf [Order])
.followedBy ("shipped") .where (_.status == "shipped")

.within (Time .hours (1)) @ @ @

val processingPatternStream = CEP.pattern
input .keyBy ("orderId"), |
|

processingPattern)
val procResult: DataStream[Either[ProcessWarn, ProcessSucc]] = | /—‘ \.
l

processingPatternStream.select { , -
(pP, timestamp) => // Timeout handler G \ |

ProcessWarn (pP ("received") .orderId, timestamp)
} oo l \
fP => // Select function ‘ > A
ProcessSucc ( !
fP ("received") .orderId, fP ("shipped") .tStamp,
fP ("shipped") .tStamp - fP ("received") .tStamp)
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Integrated Stream Analytics with CEP
.. and both at the same time!



Count Delayed Shipments
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Compute Avg Processing Time L.
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CEP + Stream SQL N

// complex event processing result
val delResult: DataStream[Either [DeliveryWarn, DeliverySucc]] = ..

val delWarn: DataStream|[DeliveryWarn] = delResult.flatMap(_.left.toOption)

val deliveryWarningTable: Table = delWarn.toTable (tableEnv)
tableEnv.registerTable ("deliveryWarnings'", deliveryWarningTable)

// calculate the delayed deliveries per day
val delayedDeliveriesPerDay = tableEnv.sql (
"""SELECT STREAM
| TUMBLE_START (tStamp, INTERVAL ‘1’ DAY) AS day,
| COUNT(*) AS cnt
| FROM deliveryWarnings
| GROUP BY TUMBLE (tStamp, INTERVAL ‘1’ DAY)""'" . stripMargin)
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CEP-enriched Stream SQL

SELECT
TUMBLE_START (tStamp, INTERVAL 'l' DAY) as day,

AVG (duration) as avgDuration
FROM (

// CEP pattern
SELECT (b.tStamp - a.tStamp) as duration, b.tStamp as tStamp

FROM inputs

PATTERN
a FOLLOW BY b PARTITION BY orderId ORDER BY tStamp

WITHIN INTERVAL 'l’ HOUR
WHERE
a.status = ‘received’ AND b.status = ‘shipped’

)
GROUP BY
TUMBLE (tStamp, INTERVAL 'l’ DAY)
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Conclusion ;.

" Apache Flink handles CEP and analytical
workloads

* Apache Flink offers intuitive APIs

"= New class of applications by CEP and
Stream SQL integration []
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Flink CALL FOR SUBMISSIONS ~ ABOUT ~  SPONSORING REGISTRATION

12-14 SEP 2016
BERLIN

CALL FOR SUBMISSIONS

Flink Forward 2016, Berlin
Submission deadline: June 30, 2016
Early bird deadline: July 15, 2016
www.flink-forward.org



http://www.flink-forward.org/

dataArtisans

We are hiring!
data-artisans.com/careers
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