

Community and Commercialization:  
How to build an open source company in 2016

Will Hayes
CEO, Lucidworks 

@iamwillhayes

Lucidworks is the primary sponsor of
the Apache Solr project

Employs over 40% of the active
committers on the Solr project

Contributes over 70% of Solr's
open source codebase

40%

70%

Based in San Francisco

Over 300 customers across
the Fortune 1000

Fusion, a Solr-powered
platform for search-driven
apps

Consulting and support for
organizations using Solr

Produces the world’s largest open
source user conference dedicated
to Lucene/Solr

The standard
for enterprise
search.

of Fortune 500
uses Solr.

90%

Massive ecosystem.

The standard
for enterprise
search.

What is  
Open Source
Software?

• In general: "Source code made
available where anyone can
study, change, and distribute it."

• Apache governance: "Creates a
process to govern and manage
the changes to an open source
project."

Why  
Open Source
Software?

• Cons: Slow, less-focused
prioritization, engineering-driven
(design and usability often suffer).

• Pros: Diversity of input, lots of
testing, distribution in many
different environments.

Apache vs. Others

• Controlled changes

• Keeps projects on the
rails

• Transparency in decisions

• Companies:
• Lucidworks => Solr
• Hortonworks => Hadoop
• DataStax => Cassandra

• Not as diverse

• Changes are governed
by a single organization

• Lack of transparency
and collaboration

• Companies:
• Elastic
• MongoDB

!

Why Community Matters

• Without the community, the governance
is useless

• Drives the project direction

• Contributes time, effort, and knowledge

• Leverages experiences of the whole
body

Why Build a Company

• Community support isn't enough

• Consulting

• Integration needs

• Advanced capabilities

• Free ain’t Free

Why Build a Company

• ARR vs. One-time

• Pressure for revenue

SLA /
Support
Services

Integration
Advanced

Stuff
(Start here) (End here)

• Licenses vs. Insurance

• Integration and advanced features

Services and Training

Providing consulting services and
training on your open source project.

Pros
• Makes it easy for enterprises to

become customers.
• Allows customers to work with

different versions.

Cons
• Little commitment from the

customers.
• Hard to build a repeatable

business.

Enterprise Support

Providing an SLA backed support
offering to customers.
Pros

• Gives enterprises “a throat to choke”
• Allows customers to work with

different versions
• Provide developer support for tough

questions (Stack exchange with one
RIGHT answer)

Cons
• Insurance is easy to cancel / High

Churn at the low end
• Value is limited in a mature

product where stability exists
• Customers will eventually train/hire

their way out of the offering

Certified Distribution

Providing a certified distro of the open
source package for customers with paid
support.

Pros
• Control the timing and delivery of

releases
• Ability to back port features and

provide patches easily

Cons
• Not quite the same as open

source branch.
• Fixes made in the community can

take time to make it your distro

Proprietary Features

Extending open source with proprietary
features and add-ons

Pros
• Enables a clear value proposition
• Software licenses makes repeatable revenue much easier
• reduces churn once they deploy on proprietary bits.
• Ability to back port features and provide patches easily

Cons
• Can create confusion in

the market

• Community may
perceive it has holding
back value

Avoiding the Wrath of the Community

• Sponsor vs. Guardian

• Contribute broad features back

• Commercialize specific features

Cares About Doesn't Care About

• Security

• Ease of Use

• Scalability

• Stability and reliability

• Industry or use-case
specificity

• Proprietary technology

What does the
community
consider?

• Technical debt

• Package size

• Testing overhead

• Does this affect more than a
subset of the population?

How do you do this?

• Look at industries.

• Look for patterns as you
transition from service to
product.

• Find dollars.

Finding your verticals

• Appropriate Use Cases Exists

• Open to Open Source Adoption

• Represented in the Community

• Revenue exists in other aspects of
the business (Services, Training)

Segment Use Cases

• High value within your target segments

• Strong fit for proprietary features

• Typically built DIY on top of Open Source

• Competitive environment exists 
(people are used to paying!)

Search-Driven
Everything

Customer
Service

Customer
Insights

Fraud Surveillance

Research
Portal

Online Retail Digital
Content

That's why we
built Fusion.

Connector Framework

Index Pipelines (ETL)

()Scale
Fault Tolerance
Real-Time

Fusion APIs

Recommendations Personalization Contextual Search
Relevancy Tool

Machine Learning / Signal Processing
Analytics

Security

Apps Mobile Silk

Database Web File Logs Hadoop

Why build with open core?

• It allows you to contribute back.

• Which allows you to leverage
value of OSS.

• Supporting the community
supports you in a karmic
feedback loop.

Good projects need good
companies.

• Be a Sponsor
• Conferences
• Webinars
• Marketing efforts (T-Shirts!)
• Web Dev

• Champion the committers

• Support the community

Lessons

• Fire low-end support business

• Increase value beyond break-fix support

• People are your most valuable asset

• Support the community that supports your business

• Evolve the business

