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• A technology company
• Our strength and focus is data
• “The Terminal”, vertical portals
• Customers: Primarily finance
• Also government, lawyers etc.
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• Started 9 years ago
• Now team lead for R&D News Search
• Search, alerting, ingest infrastructure
• Started with Solr/Lucene 3 years ago
• Now a committer with the project



The News Search Ecosystem
• Suggest queries as the user is typing
• Understand a query to figure out what’s being requested

• NLP, entity recognition/disambiguation, spellcheck

• Search for keywords and metadata of documents
• Sort the documents as the usage demands

• If sorting by relevance, what’s actually relevant for the user?
• Should some results be promoted ahead of others?

• Alert users when new stories match the active search
• Expose facets for refining and discovery
• Recommend searches and search results
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What we did in the last few 
years…• Existing system based on a proprietary system

• Proprietary product, past its end of life
• Inflexible, no scalable relevance sorting

• Enter Solr/Lucene!
• Rich in features, extensible and actively maintained
• Free software, we are involved and contribute back!
• From-scratch alerting backend based on Lucene and Luwak

• Architectural revamp of the News Search backend
• Scalable with load and data: Just add machines!
• Maintainable: Easy to add metadata, re-index all of the 

data
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How we did it in four easy 
steps…

• Make it work

• Make it fast

• Make it stable

• Make it better
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What goes in…
• Document

• News stories, research documents, tweets…
• Story body, headline, time of arrival, source…
• Tags (companies, topics, people etc.) associated with the story

• Query

KEYWORDS:(“Donald Trump” N/5 “great*” IN STORYTOP/75) AND (REGION:MEX 
OR REGION:NKOREA) AND NOT TOPIC:ODD AND (WIRE:BLOOMBERG OR 
WIRE:TWT)

• Multiple fields (keywords, topics, regions, sources)
• Boolean (and/or/not), proximity (n/5), zoning (storytop/75) 

operators
• Phrase search (“Donald Trump”), wildcard searches (“great*”)
• Range queries (time of story), search filters (relevance, 

language) 7



The madness we deal with…
• Arbitrarily complex Boolean queries

• for both search and alerting
• users create queries as large as 20K characters (or more!)

• Lists of metadata can be specified in short hand
• A “ticker list” could have 1000s of companies interesting to 

the user

• Stories from 125K+ sources
• users privileged for a subset of these sources
• can be turned on/off per user
• ACLs can have a few, many or all of the users

• Searches and stories in 40 languages
• any user can have a subset of these selected
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The News Search cloud
• Lots of Linux machines on Solr clouds housing:

• Hundreds of shards, and thousands of Solr cores
• Multiple tiers: ‘recent’ collection to optimize chronological 

results
• Cross data-centre redundancy

• Stories available for search in 125ms, minimal caching

• Custom components for:
• Parsing: XML query parser, with additions
• Indexing: For handling tags, more on that later…
• Searching: Custom Lucene queries for some cases
• Post Filtering: For privileging of news stories
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Parsing search queries
• We need to…

• Understand In-house search syntax
• Validate/Privilege tags based on DB
• Present part of search query in UI
• Understand query to suggest sources

• Parsed outside Solr to XML queries (SOLR-839)
• Future: Compact transfer: JSON, Binary? (SOLR-4351)

• Will state* NP/10 ((“tax*” N/5 “incentive”) OR “sales and use”) 
work?

• Making spans interoperate with any query
• Originally used flaxsearch/lucene-solr-intervals, now 

upstream
1
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https://issues.apache.org/jira/browse/SOLR-839
https://issues.apache.org/jira/browse/SOLR-4351


Searching for news tags
• Each story has multiple tags associated

• Topics, companies, regions, people…
• Each tag has a ‘relevance’ provided by a classifier
• Up to a few hundred tags per story, millions overall

• Tag relevance to be considered for scoring and filtering
• How do you normalize relevance with keywords?

•  One solution: repurpose keyword ranking for tags
• Use TF/IDF for tags like with keywords
• Modify searches to be filtered by ranges of TF values
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Optimizing searches
• Running “ticker list” searches fast is hard

• Boolean OR of thousands of terms with “relevance” filters
• Naïve: BooleanQuery(Filter(TermQuery, FRange)…)
• Better: BooleanQuery(TermFreqQuery…)
• Even more: TermsFreqQuery

• Optimizing searches for sorting by time (SOLR-5730)
• Pluggable merge policy factory in Solr (SOLR-8621)
• Solr support (use the schema) for 

EarlyTerminatingSortingCollector

• How aggressive is your merge policy?
• aka how much can you squeeze out of your SSDs?
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https://issues.apache.org/jira/browse/SOLR-5730
https://issues.apache.org/jira/browse/SOLR-8621


Optimizing searches
• You really need that ShardHandlerFactory? (and other tales 

of GC)
• Even small inefficiencies multiply at scale (e.g. SOLR-6603)
• Routing smartly to reduce the probability of GC (SOLR-6730)

• Looking out for what the kernel is doing
• “swappiness”, I/O scheduler fit for SSDs, huge pages

• Watch where the time’s spent (may not be where you 
expect…)

• No point with fast searches if max connections is too low
• There may be that odd hardcoded number (e.g. SOLR-6605)
• Even Jetty could have bugs which cause requests to stall and 

timeout
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https://issues.apache.org/jira/browse/SOLR-6603
https://issues.apache.org/jira/browse/SOLR-6730
https://issues.apache.org/jira/browse/SOLR-6605


Scaling Solr Cloud
• Distributed coordination (good ol’ Overseer!)

• Hundreds of cores restarted at a time during weekends
• Scaling cluster state (SOLR-5381, SOLR-5872)

• Leadership mechanisms have to scale
• Transitions have to happen quickly (SOLR-6261)
• Leaders shouldn’t gang up on some machines (SOLR-6491)

• Replica recovery should not affect live traffic
• Worse, shouldn’t affect cloud stability with network 

saturation!
• Throttling (SOLR-6485), using a different network (

SOLR-9044)
• Use transaction log recovery where possible (SOLR-6359) 
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https://issues.apache.org/jira/browse/SOLR-5381
https://issues.apache.org/jira/browse/SOLR-5872
https://issues.apache.org/jira/browse/SOLR-6261
https://issues.apache.org/jira/browse/SOLR-6491
https://issues.apache.org/jira/browse/SOLR-6485
https://issues.apache.org/jira/browse/SOLR-9044
https://issues.apache.org/jira/browse/SOLR-6359


There will be storms…
• Thousands of cores in a cloud is a lot of fun 

• Started with 4.3.1 with many stability concerns, a lot better 
now

• If there’s a race condition, we will hit it!
• Is it safe to stop multiple replicas of a shard 

simultaneously?
• What happens when you shutdown in the middle of a 

merge?
• Can a delete-by-query around a leader switch stall it? (

SOLR-8760)

• If you have to screw up, be controlled about it!
• Zombie checks should be light (SOLR-5718)
• Will the cloud always heal after a network partition?
• As with real life, sometimes democracy can be annoying…
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https://issues.apache.org/jira/browse/SOLR-8760
https://issues.apache.org/jira/browse/SOLR-5718


Storms in teacups can blow 
over…• With infinite query flexibility come poisonous queries

• No good can come out of phrases, wildcards and spans in 
excess

• “Why don’t I copy paste the entire text to find the article?”
• “My keyboard has a key stuck, time for lunch!”

• Solr now has better circuit breakers for queries (SOLR-5986)
• Long queries can take down replicas with GC pressure!
• We can do better, statistical “query plans” anyone?

• User replica affinity (SOLR-6730)
• People can be persistent with their failing queries!
• Protects the system against one user taking down the cloud
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https://issues.apache.org/jira/browse/SOLR-5986
https://issues.apache.org/jira/browse/SOLR-6730


Containing systemic failure
• Protecting one part from the system from the other

• Isolating thread-pools for searching and indexing (
SOLR-7344)

• Isolating query federation from query execution
• Isolating critical roles like the Overseer (SOLR-5476)
• Future: Isolating costly queries from cheap ones (what’s 

costly?)

• It’s all one happy cloud, until garbage gets into the input…
• Loosely coupled replicas to mitigate issues with input 

pipeline
• CDCR to soon help synchronisation! (SOLR-6465, 

SOLR-6466)
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https://issues.apache.org/jira/browse/SOLR-7344
https://issues.apache.org/jira/browse/SOLR-5476
https://issues.apache.org/jira/browse/SOLR-6465
https://issues.apache.org/jira/browse/SOLR-6466


Improving the search 
experience• Grouping is great, as long as it’s pragmatic

• People, not bots, sometimes get to hundreds of pages 
down!

• Considering a window of N results for grouping and deep 
paging

• Implementing a Learning-to-Rank framework in Solr (
SOLR-8542)

• Define features, models to rank results
• Get back feature values with responses to train models 

offline
• Talk at Lucene Revolution: Learning to Rank in Solr on 

YouTube

• Showing what’s trending in news, and intelligent faceting
• Document frequency statistics can be streamed
• Trend detection pipeline to consume and “detect 

anomalies”
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https://issues.apache.org/jira/browse/SOLR-8542
https://www.youtube.com/watch?v=M7BKwJoh96s


The road ahead…
• Never-ending quest of relevance: better user models, 

connecting data

• Searching across languages with language detection and 
translation

• Better searching across news and social media

• Searching and scoring effectively in bulk
• “Get me the most important story for each company in my 

portfolio”

• Readership sorted views for any search
• Tens of millions of story hits per day, how best to index? (

SOLR-5944?)

• Blending chronological and relevance ranked searching19

https://issues.apache.org/jira/browse/SOLR-5944


Committers: 3, Patches: 100s, Challenges: Countless!
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Alerting: Prospective search
• Searching turned upside down

• Find which of millions of searches match one document
• Alert users who are interested in these searches
• Use tailored searches to tag documents with topics
• No out of the box support for Solr

• Initial two-week prototype
• MemoryIndex, loop over all searches registered
• Works, but too slow for any production use
• In theory, you can “throw more hardware”, but we can do 

better…
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Alerting: Prospective search
• Baleene: A standalone application for prospective search

• Based on and improving Luwak, in turn based on Lucene
• Understands document schema like Solr does
• Initially a Lucene fork needed, then merged with 5.3
• Indexes queries, and “pre-searches” queries of documents
• “Turning search upside down” – Alan Woodward at Buzz 

2014
• Planning to release application as open source

• Future: Alerting based on relevance
• Feed document frequencies from Solr to Baleene for 

scoring
• Top ranked result screens updating in real time
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