
Team Leader, R&D News Search, Bloomberg L.P.
andyetitmoves@apache.org

Ramkumar Aiyengar

Building the News Search Engine

• A technology company
• Our strength and focus is data
• “The Terminal”, vertical portals
• Customers: Primarily finance
• Also government, lawyers etc.

2

• Started 9 years ago
• Now team lead for R&D News Search
• Search, alerting, ingest infrastructure
• Started with Solr/Lucene 3 years ago
• Now a committer with the project

The News Search Ecosystem
• Suggest queries as the user is typing
• Understand a query to figure out what’s being requested

• NLP, entity recognition/disambiguation, spellcheck

• Search for keywords and metadata of documents
• Sort the documents as the usage demands

• If sorting by relevance, what’s actually relevant for the user?
• Should some results be promoted ahead of others?

• Alert users when new stories match the active search
• Expose facets for refining and discovery
• Recommend searches and search results

3

4

What we did in the last few
years…• Existing system based on a proprietary system

• Proprietary product, past its end of life
• Inflexible, no scalable relevance sorting

• Enter Solr/Lucene!
• Rich in features, extensible and actively maintained
• Free software, we are involved and contribute back!
• From-scratch alerting backend based on Lucene and Luwak

• Architectural revamp of the News Search backend
• Scalable with load and data: Just add machines!
• Maintainable: Easy to add metadata, re-index all of the

data

5

How we did it in four easy
steps…

• Make it work

• Make it fast

• Make it stable

• Make it better

6

What goes in…
• Document

• News stories, research documents, tweets…
• Story body, headline, time of arrival, source…
• Tags (companies, topics, people etc.) associated with the story

• Query

KEYWORDS:(“Donald Trump” N/5 “great*” IN STORYTOP/75) AND (REGION:MEX
OR REGION:NKOREA) AND NOT TOPIC:ODD AND (WIRE:BLOOMBERG OR
WIRE:TWT)

• Multiple fields (keywords, topics, regions, sources)
• Boolean (and/or/not), proximity (n/5), zoning (storytop/75)

operators
• Phrase search (“Donald Trump”), wildcard searches (“great*”)
• Range queries (time of story), search filters (relevance,

language) 7

The madness we deal with…
• Arbitrarily complex Boolean queries

• for both search and alerting
• users create queries as large as 20K characters (or more!)

• Lists of metadata can be specified in short hand
• A “ticker list” could have 1000s of companies interesting to

the user

• Stories from 125K+ sources
• users privileged for a subset of these sources
• can be turned on/off per user
• ACLs can have a few, many or all of the users

• Searches and stories in 40 languages
• any user can have a subset of these selected

8

The News Search cloud
• Lots of Linux machines on Solr clouds housing:

• Hundreds of shards, and thousands of Solr cores
• Multiple tiers: ‘recent’ collection to optimize chronological

results
• Cross data-centre redundancy

• Stories available for search in 125ms, minimal caching

• Custom components for:
• Parsing: XML query parser, with additions
• Indexing: For handling tags, more on that later…
• Searching: Custom Lucene queries for some cases
• Post Filtering: For privileging of news stories

9

Parsing search queries
• We need to…

• Understand In-house search syntax
• Validate/Privilege tags based on DB
• Present part of search query in UI
• Understand query to suggest sources

• Parsed outside Solr to XML queries (SOLR-839)
• Future: Compact transfer: JSON, Binary? (SOLR-4351)

• Will state* NP/10 ((“tax*” N/5 “incentive”) OR “sales and use”)
work?

• Making spans interoperate with any query
• Originally used flaxsearch/lucene-solr-intervals, now

upstream
1
0

https://issues.apache.org/jira/browse/SOLR-839
https://issues.apache.org/jira/browse/SOLR-4351

Searching for news tags
• Each story has multiple tags associated

• Topics, companies, regions, people…
• Each tag has a ‘relevance’ provided by a classifier
• Up to a few hundred tags per story, millions overall

• Tag relevance to be considered for scoring and filtering
• How do you normalize relevance with keywords?

• One solution: repurpose keyword ranking for tags
• Use TF/IDF for tags like with keywords
• Modify searches to be filtered by ranges of TF values

11

Optimizing searches
• Running “ticker list” searches fast is hard

• Boolean OR of thousands of terms with “relevance” filters
• Naïve: BooleanQuery(Filter(TermQuery, FRange)…)
• Better: BooleanQuery(TermFreqQuery…)
• Even more: TermsFreqQuery

• Optimizing searches for sorting by time (SOLR-5730)
• Pluggable merge policy factory in Solr (SOLR-8621)
• Solr support (use the schema) for

EarlyTerminatingSortingCollector

• How aggressive is your merge policy?
• aka how much can you squeeze out of your SSDs?

12

https://issues.apache.org/jira/browse/SOLR-5730
https://issues.apache.org/jira/browse/SOLR-8621

Optimizing searches
• You really need that ShardHandlerFactory? (and other tales

of GC)
• Even small inefficiencies multiply at scale (e.g. SOLR-6603)
• Routing smartly to reduce the probability of GC (SOLR-6730)

• Looking out for what the kernel is doing
• “swappiness”, I/O scheduler fit for SSDs, huge pages

• Watch where the time’s spent (may not be where you
expect…)

• No point with fast searches if max connections is too low
• There may be that odd hardcoded number (e.g. SOLR-6605)
• Even Jetty could have bugs which cause requests to stall and

timeout
13

https://issues.apache.org/jira/browse/SOLR-6603
https://issues.apache.org/jira/browse/SOLR-6730
https://issues.apache.org/jira/browse/SOLR-6605

Scaling Solr Cloud
• Distributed coordination (good ol’ Overseer!)

• Hundreds of cores restarted at a time during weekends
• Scaling cluster state (SOLR-5381, SOLR-5872)

• Leadership mechanisms have to scale
• Transitions have to happen quickly (SOLR-6261)
• Leaders shouldn’t gang up on some machines (SOLR-6491)

• Replica recovery should not affect live traffic
• Worse, shouldn’t affect cloud stability with network

saturation!
• Throttling (SOLR-6485), using a different network (

SOLR-9044)
• Use transaction log recovery where possible (SOLR-6359)

14

https://issues.apache.org/jira/browse/SOLR-5381
https://issues.apache.org/jira/browse/SOLR-5872
https://issues.apache.org/jira/browse/SOLR-6261
https://issues.apache.org/jira/browse/SOLR-6491
https://issues.apache.org/jira/browse/SOLR-6485
https://issues.apache.org/jira/browse/SOLR-9044
https://issues.apache.org/jira/browse/SOLR-6359

There will be storms…
• Thousands of cores in a cloud is a lot of fun

• Started with 4.3.1 with many stability concerns, a lot better
now

• If there’s a race condition, we will hit it!
• Is it safe to stop multiple replicas of a shard

simultaneously?
• What happens when you shutdown in the middle of a

merge?
• Can a delete-by-query around a leader switch stall it? (

SOLR-8760)

• If you have to screw up, be controlled about it!
• Zombie checks should be light (SOLR-5718)
• Will the cloud always heal after a network partition?
• As with real life, sometimes democracy can be annoying…

15

https://issues.apache.org/jira/browse/SOLR-8760
https://issues.apache.org/jira/browse/SOLR-5718

Storms in teacups can blow
over…• With infinite query flexibility come poisonous queries

• No good can come out of phrases, wildcards and spans in
excess

• “Why don’t I copy paste the entire text to find the article?”
• “My keyboard has a key stuck, time for lunch!”

• Solr now has better circuit breakers for queries (SOLR-5986)
• Long queries can take down replicas with GC pressure!
• We can do better, statistical “query plans” anyone?

• User replica affinity (SOLR-6730)
• People can be persistent with their failing queries!
• Protects the system against one user taking down the cloud

16

https://issues.apache.org/jira/browse/SOLR-5986
https://issues.apache.org/jira/browse/SOLR-6730

Containing systemic failure
• Protecting one part from the system from the other

• Isolating thread-pools for searching and indexing (
SOLR-7344)

• Isolating query federation from query execution
• Isolating critical roles like the Overseer (SOLR-5476)
• Future: Isolating costly queries from cheap ones (what’s

costly?)

• It’s all one happy cloud, until garbage gets into the input…
• Loosely coupled replicas to mitigate issues with input

pipeline
• CDCR to soon help synchronisation! (SOLR-6465,

SOLR-6466)

17

https://issues.apache.org/jira/browse/SOLR-7344
https://issues.apache.org/jira/browse/SOLR-5476
https://issues.apache.org/jira/browse/SOLR-6465
https://issues.apache.org/jira/browse/SOLR-6466

Improving the search
experience• Grouping is great, as long as it’s pragmatic

• People, not bots, sometimes get to hundreds of pages
down!

• Considering a window of N results for grouping and deep
paging

• Implementing a Learning-to-Rank framework in Solr (
SOLR-8542)

• Define features, models to rank results
• Get back feature values with responses to train models

offline
• Talk at Lucene Revolution: Learning to Rank in Solr on

YouTube

• Showing what’s trending in news, and intelligent faceting
• Document frequency statistics can be streamed
• Trend detection pipeline to consume and “detect

anomalies”

18

https://issues.apache.org/jira/browse/SOLR-8542
https://www.youtube.com/watch?v=M7BKwJoh96s

The road ahead…
• Never-ending quest of relevance: better user models,

connecting data

• Searching across languages with language detection and
translation

• Better searching across news and social media

• Searching and scoring effectively in bulk
• “Get me the most important story for each company in my

portfolio”

• Readership sorted views for any search
• Tens of millions of story hits per day, how best to index? (

SOLR-5944?)

• Blending chronological and relevance ranked searching19

https://issues.apache.org/jira/browse/SOLR-5944

Committers: 3, Patches: 100s, Challenges: Countless!

20

2
1

Q&
A

Alerting: Prospective search
• Searching turned upside down

• Find which of millions of searches match one document
• Alert users who are interested in these searches
• Use tailored searches to tag documents with topics
• No out of the box support for Solr

• Initial two-week prototype
• MemoryIndex, loop over all searches registered
• Works, but too slow for any production use
• In theory, you can “throw more hardware”, but we can do

better…

22

Alerting: Prospective search
• Baleene: A standalone application for prospective search

• Based on and improving Luwak, in turn based on Lucene
• Understands document schema like Solr does
• Initially a Lucene fork needed, then merged with 5.3
• Indexes queries, and “pre-searches” queries of documents
• “Turning search upside down” – Alan Woodward at Buzz

2014
• Planning to release application as open source

• Future: Alerting based on relevance
• Feed document frequencies from Solr to Baleene for

scoring
• Top ranked result screens updating in real time

23

	Folie 1
	Folie 2
	The News Search Ecosystem
	Folie 4
	What we did in the last few years…
	How we did it in four easy steps…
	What goes in…
	The madness we deal with…
	The News Search cloud
	Parsing search queries
	Searching for news tags
	Optimizing searches
	Optimizing searches
	Scaling Solr Cloud
	There will be storms…
	Storms in teacups can blow over…
	Containing systemic failure
	Improving the search experience
	The road ahead…
	Committers: 3, Patches: 100s, Challenges: Countless!
	Folie 21
	Alerting: Prospective search
	Alerting: Prospective search

