
Scoring for human
beings

Britta Weber

elasticsearch

What is scoring?

Determine the relevance of a document given a
search request	

- Given keywords [“football”, “world
cup”], what is the most relevant news article
the user might want to read?	

- Given the criteria [“java”, “expected
income”, “work location”], which
candidate in the data set is most likely to be a
good employee?

Hm. So how is this
actually implemented?

Style shamelessly adapted from xkcd.org

http://xkcd.org

Style shamelessly adapted from xkcd.org

http://xkcd.org

The purpose of this talk

Relieve you of the burden to find the point
where to get started!	

1. Give an introduction in the theory	

- Bag-of-word model	

- Hint on where to look things up	

2. How can you tweak scores with elasticsearch	

- How to use what is there	

- How to implement new things	

How does scoring of text work?	

TF - IDF

Relevancy - the vector space model

Step Query Doc 1 Doc 2

The text brown fox The quick brown fox
likes brown mice

The red fox

The terms (brown, fox) (brown, brown, fox,
likes, mice, quick, the)

(fox, red, the)

A frequency
vector

(1, 1) (2, 1) (0, 1)

Relevancy - 3? 1?

Relevancy - the vector space model

Step Query Doc 1 Doc 2

The text brown fox The quick brown fox
likes brown mice

The red fox

The terms (brown, fox) (brown, brown, fox,
likes, mice, quick)

(fox, red)

A frequency
vector

(1, 1) (2, 1) (0, 1)

Relevancy - 3? 1?

Relevancy - the vector space model

d1: “the quick brown fox
likes brown mice”

tf: brown

tf: fox

q: “brown fox”

d2: “the red fox”

1 2

2

1

.

Queries and documents
are vectors.	

What is the distance
between query and
document vector?

d1: “the quick brown fox
likes brown mice”

tf: brown

tf: fox

q: “brown fox”

d2: “the red fox”

1 2

2

1

Distance of docs and
query:	

Cosine of angle between
document vector on
query axis.

cos(!) =
~

d · ~q

|~d| · |~q|
↵

�

Relevancy - Cosine Similarity

Relevancy - Projection distance

d1: “the quick brown fox
likes brown mice”

tf: brown

tf: fox

q: “brown fox”

d2: “the red fox”

1 2

2

1

.

.

Distance of docs and
query:	

Project document vector
on query axis. sc

or
e =

>

Relevancy - Field length

Shorter text is more relevant than longer
text.

w2(brown)

w1(fox)

.

original document
vector d

w1,d 2*w1,d

longer document with
same tfs

shorter document with
same tfs

sc
or

e =
>

Relevancy - Field length

Relevancy - document frequency

Words that appear more often in documents
are less important that words that appear
less often.

Relevance: Even more tweaking!

w2(brown)

w1(fox)

.
. multiplied weight

for fox by 2

original document
vector d

w1,d 2*w1,d

sc
or

e =
>

Relevancy - term weight

How many of these factors are there?

Lucene Similarity - TF-IDF

query norm core TF/IDF weight

score of a document
d for a given query q

field length, some
function turning the
number of tokens
into a float, roughly:

boost of query
term t

http://lucene.apache.org/core/4_8_1/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

inverted document
frequency for term t

http://lucene.apache.org/core/4_8_1/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

That was TF-IFD

But..there are other fancy equations with
lots of greek letters, right?

Yes! Elasticsearch is built on top of Lucene and
there we have: 	

- Language model scoring	

- BM25	

- DFRSimilarity	

- …
https://lucene.apache.org/core/4_8_1/core/org/apache/lucene/search/similarities/Similarity.html

https://lucene.apache.org/core/4_8_1/core/org/apache/lucene/search/similarities/Similarity.html

And how do I learn about these?

+	

“similarity module” doc	

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/index-modules-
similarity.html#configuration	

+	

“Elasticsearch - The definite Guide”	

http://www.elasticsearch.org/guide/en/elasticsearch/guide/current/index.html	

!

Coming soon!

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/index-modules-similarity.html#configuration
http://www.elasticsearch.org/guide/en/elasticsearch/guide/current/index.html

II: DIY scoring	

Why would you want to tweak the score?

1. If you need numerical values: popularity of an item	

2. You want a distance of a numerical value to influence the
score	

3. You want to score tags	

4. You want to write your own text scoring function	

5. ….	

6. You want to combine these	

!

http://colors.qbox.io/

http://blog.qbox.io/boston-elasticsearch-meetup-scoring-images-by-color

http://colors.qbox.io/
http://blog.qbox.io/boston-elasticsearch-meetup-scoring-images-by-color

function_score - basic structure

 "function_score": {	
 "(query|filter)": {},	
 "functions": [
 {	
 "filter": {},	
 "FUNCTION": {}	
 },	
 ...	
]	
 }	

Apply score computation only to docs
matching a specific filter (default

“match_all”)

Apply this function to matching docs

query or filter

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html

Options

!

- field value factor 	

- distance function	

- random scoring	

- boost factor	

- script scoring

"field_value_factor": {!
 "field": "popularity",!
 "factor": 1.2,!
 "modifier": "sqrt"!
}

Options

!

- field value factor

- distance function	

- random scoring	

- boost factor	

- script scoring

"field_value_factor": {!
 "field": "popularity",!
 "factor": 1.2,!
 "modifier": "sqrt"!
}

Options

!

- field value factor 	

- distance function

- random scoring	

- boost factor	

- script scoring

"DECAY_FUNCTION": {!
 "price": {!
 "origin": "0",!
 "scale": "20"!
 }!
}

Options

!

- field value factor 	

- distance function	

- random scoring

- boost factor	

- script scoring

"random_score": {!
 "seed" : number!
}

Options

!

- field value factor 	

- distance function	

- random scoring	

-boost factor

- script scoring

"boost_factor": "3"

Scoring odysseys

!

http://www.elasticsearch.org/videos/
introducing-custom-scoring-functions/	

!

https://gist.github.com/brwe/7049473	

http://www.elasticsearch.org/videos/introducing-custom-scoring-functions/
https://gist.github.com/brwe/7049473

Why would you want
to tweak the score?

1. If you need numerical values: popularity of an item	

2. You want a distance of a numerical value to influence the
score	

3. You want to score tags	

4. You want to write your own text
scoring function	

5. ….	

6. You want to combine these	

function_score - script scoring

 "function_score": {!
 "(query|filter)": {},!
 "functions": [!
 {!
 “script_score": {!
! ! ! ! ! ! ! ! “params”: {…},!
! ! ! ! ! ! ! ! “lang”: “…”,!
! ! ! ! ! ! ! ! “script”: “…”!
! ! ! ! ! ! }!
 },!
 ...!
]!
 }!

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html

python, groovy, 	

mvel, native,…

any constant input that 	

you can pre-compute

?

document values

_doc variable allows access to document values: 	

“_doc[‘popularity’].value”!

“Math.pow(_doc[‘popularity’].value,2)”!

!

_index variable allows access to term statistics	

What is in an index?

Term frequency

_index[‘text’][‘term’].tf()!

!

Number of times term is in a document	

!

The quick brown fox likes brown mice:	

!
tf of brown : 2	

tf of fox : 2

"query": {!
 "function_score": {!
 "script_score": {!
 "script": "_index['text']['berlin'].tf()"!
 }!
 }!
 }!
!

!

!

document that contains “berlin” most often will score 	

 highest!

 "query": {!
 "function_score": {!
 "filter": {!
 "terms": {!
 "text": ["john","smith"],!
 "execution": "and"!
 }!
 },!
 "script_score": {!
 "params": {!
 "field": "text",!
 "terms": [“john”, "smith"]!
 },!
 "script": "float score = 0;!
! !! ! ! for (term : terms) {!
 score += _index[field][term].tf();!
 }!
! !! ! ! return score;",!
 "lang": "mvel"!
 }!
 }!
 }!

This will speed up things

Search terms and field

Sum term frequency 	

over all terms

Document frequency

_index[‘text’][‘token’].df()!

!

number of times token appears in a doc, regardless of how often	

!

doc1: {“text”: “I am Sam, Sam I am.”}!

doc2: {“text”: “I know that I don’t know.”}!

_index[‘text’][‘i’].df() = 2

And so on…

_index[‘text’][‘token’].ttf()!

total term frequency:!

sum of term frequency over all documents	

!

_index[‘text’][‘token’].sumttf()!

sum total term frequency:	

number of tokens in all docs in index	

detour token count

- Lucene does not store number of tokens in a field	

- must be enabled in mapping and accessed as regular
field:	

!

- access as field value 	
!
! ! “doc[‘text.word_count’].value"

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-core-types.html

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-core-types.html

Positions

iterator pos_iter =
_index[‘text’].get(‘token’, _POSITIONS)!

!

“text”: “I am Sam, Sam I am.”!

 0 1 2 3 4 5!

positions:!

“i”: [0, 4]!

“am”: [1, 5]!

…!

!

TF-IDF in 17 lines

TF-IDF in 17 lines

"params": {"field": "text",!
 "words": ["john","smith"]!
 },!
"script": “!
float score = 0;!
indexField = _index[field];
word_count = _doc["text.word_count"].value;
for (term : terms) {
 indexFieldTerm = indexField[term];
 int df = (int) indexFieldTerm.df();
 int tf = indexFieldTerm.tf();
 if (df != 0 && tf != 0) {
 score += Math.sqrt(tf) *
 Math.pow(
 1+Math.log((float) indexField.docCount() /
 ((float) df + 1.0)),
 2) /
 Math.log(word_count);
 }
}
return score;

TF-IDF in 17 lines

"params": {"field": "text",!
 "words": ["john","smith"]!
 },!
"script": “!
float score = 0;!
indexField = _index[field];
word_count = _doc["text.word_count"].value;
for (term : terms) {
 indexFieldTerm = indexField[term];
 int df = (int) indexFieldTerm.df();
 int tf = indexFieldTerm.tf();
 if (df != 0 && tf != 0) {
 score += Math.sqrt(tf) *
 Math.pow(
 1+Math.log((float) indexField.docCount() /
 ((float) df + 1.0)),
 2) /
 Math.log(word_count);
 }
}
return score;

TF-IDF in 17 lines

"params": {"field": "text",!
 "words": ["john","smith"]!
 },!
"script": “!
float score = 0;!
indexField = _index[field];
word_count = _doc["text.word_count"].value;
for (term : terms) {
 indexFieldTerm = indexField[term];
 int df = (int) indexFieldTerm.df();
 int tf = indexFieldTerm.tf();
 if (df != 0 && tf != 0) {
 score += Math.sqrt(tf) *
 Math.pow(
 1+Math.log((float) indexField.docCount() /
 ((float) df + 1.0)),
 2) /
 Math.log(word_count);
 }
}
return score;

TF-IDF in 17 lines

"params": {"field": "text",!
 "words": ["john","smith"]!
 },!
"script": “!
float score = 0;!
indexField = _index[field];
word_count = _doc["text.word_count"].value;
for (term : terms) {
 indexFieldTerm = indexField[term];
 int df = (int) indexFieldTerm.df();
 int tf = indexFieldTerm.tf();
 if (df != 0 && tf != 0) {
 score += Math.sqrt(tf) *
 Math.pow(
 1+Math.log((float) indexField.docCount() /
 ((float) df + 1.0)),
 2) /
 Math.log(word_count);
 }
}
return score;

TF-IDF in 17 lines

"params": {"field": "text",!
 "words": ["john","smith"]!
 },!
"script": “!
float score = 0;!
indexField = _index[field];
word_count = _doc["text.word_count"].value;
for (term : terms) {
 indexFieldTerm = indexField[term];
 int df = (int) indexFieldTerm.df();
 int tf = indexFieldTerm.tf();
 if (df != 0 && tf != 0) {
 score += Math.sqrt(tf) *
 Math.pow(
 1+Math.log((float) indexField.docCount() /
 ((float) df + 1.0)),
 2) /
 Math.log(word_count);
 }
}
return score;

Not exactly the same

Phrase scorer in 13 lines

"params": {"field": "text",!
 "words": ["john","smith"]!
 },!
"script": “!
!
firstNamePositions = _index[field].get(words[0], _POSITIONS);!
lastNamePositions = _index[field].get(words[1],_POSITIONS).iterator();
lastNamePosition = -1; !
float wordDistance = 1000000;!
for (firstNamePosition : firstNamePositions) {!
! while (lastNamePositions.hasNext() &&!
! !! ! (lastNamePosition <= firstNamePosition.position)) {!
! !! lastNamePosition = lastNamePositions.next().position;!
! } !
! wordDistance= Math.min(wordDistance, !
! !! ! ! ! ! ! ! lastNamePosition - firstNamePosition.position); !
} !
return (float)1.0/wordDistance;"

Very rough estimate of
runntime

!

Run 5 times and measure time for phrase scorer and TFIDF	

Compare 	

- Lucene phrase query/Terms query	

- MVEL	

- native script	

!

Very basic script implementation	

Lucene MVEL native

tf-idf 317.8 52191.25 1710.6

phrase 1185.6 39163.2 1230.15

Check if it is
already there

Check if it is
already there

function_score has already built it	

- field value factor 	

- distance function	

- random scoring	

- boost factor

Check if it is
already there

Done!

yes

Check if it is
already there

Use your favorite
scripting lang to
try things out

Done!

no

Check if it is
already there

Use your favorite
scripting lang to
try things out

Done!

no

- python	

- groovy	

- mvel	

- javascript	

Check if it is
already there

Use your favorite
scripting lang to
try things out

Done!

no

Fast 	

enough?

Check if it is
already there

Use your favorite
scripting lang to
try things out

Use a native
script

Done!

Not fast 	

enough?no

Check if it is
already there

Use your favorite
scripting lang to
try things out

Use a native
script

Done!

Not fast 	

enough?no

Plugin	

Pro: 	

faster than scripting, because in java	

Con: 	

- Needs to be maintained	

- Need to restart node when changed	

- More code	

!
https://github.com/imotov/elasticsearch-
native-script-example

https://github.com/imotov/elasticsearch-native-script-example

Check if it is
already there

Use your favorite
scripting lang to
try things out

Use a native
script

Done!

Not fast 	

enough?no

Fast 	

enough?

Check if it is
already there

Use your favorite
scripting lang to
try things out

Use a native
script

Wrap in rescore

Done!

Not fast 	

enough?

Not fast 	

enough?

no

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-rescore.html

!
- Apply scoring function only to top N

documents.	

- good for reordering	

- need to know the best results are

within the top N

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-rescore.html

Check if it is
already there

Use your favorite
scripting lang to
try things out

Use a native
script

Use rescore
instead of

function_score

Done!

Not fast 	

enough?

Not fast 	

enough?

no

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-rescore.html

!
 "query" : {!
 …!
 },!
 "rescore" : {!
 "window_size" : 50,!
 "query" : {!
 "rescore_query" : {!
 “function_score”: {!
!
…

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-rescore.html

Check if it is
already there

Use your favorite
scripting lang to
try things out

Use a native
script

Use rescore
instead of

function_score

Done!

Not fast 	

enough?

Not fast 	

enough?

no

Fast 	

enough?

Check if it is
already there

Use your favorite
scripting lang to
try things out

Use a native
script

Make use of pre
computed values

Use rescore
instead of

function_score

Done!

Not fast 	

enough?

Not fast 	

enough?

Not fast 	

enough?

no

Lucene is quicker because of pre-
computed values	

- Pass as parameters	

- Store with the document

Check if it is
already there

Use your favorite
scripting lang to
try things out

Use a native
script

Make use of pre
computed values

Use rescore
instead of

function_score

Done!

Not fast 	

enough?

Not fast 	

enough?

Not fast 	

enough?

no

Fast 	

enough?

Check if it is
already there

Use your favorite
scripting lang to
try things out

Use a native
script

Make use of pre
computed values

Use rescore
instead of

function_score

Done!

Not fast 	

enough?

Not fast 	

enough?

Not fast 	

enough?

Not fast 	

enough?

no

Check if it is
already there

Use your favorite
scripting lang to
try things out

Use a native
script

Wait until
TODOS are

done/ make PR

Make use of pre
computed values

Use rescore
instead of

function_score

Done!

Not fast 	

enough?

Not fast 	

enough?

Not fast 	

enough?

Not fast 	

enough?

no

TODOS

• Pre compute values when indexing: Script
to compute values one the fly after analysis	

• Pre compute values before search
execution on shard (idf)	

• Currently only uses shard statistics, collect
for whole index instead before execution	

• Analyze query terms, like match query

Hm. This is all
interesting, but I really
do not need to tweak
the score….

Where else can you use this?

- Script fields: Get a document and compute
your favurite value, class,… based on term
statistics	

- Aggregations: Use a script to aggregate
term statistics based on a class, query,…

Other nice related Buzzwords talks

1. Different queries in elasticsearch	

See “Elasticsearch Query DSL - Not just for wizards…”,
Clinton Gormley	

2. Evaluation	

See “Search quality in practice”, Alexander Sibiryakov	

3. Learning how to rank	

See ”Lean Ranking infrastructure with Solr”, Sergej Khmoneko	

4. Implementation details	

See “The ultimate guide for Elasticsearch plugins”, Itamar Syn-
Hershko

But wait…there’s
more!

Naive Bayes

Use script to gather term statistics and to learn
the model	

!

Use script field to apply the model to new
documents!	

Plus: Use significant terms aggregation to apply
the features.	

posProbs = hash map, probabilities for each term, P(t|C=positive)!
negProbs = hash map, probabilities for each term, P(t|C=negative)!
terms = list of all the terms!
pPos=0; pNeg =0; !
for(term : terms) {!
 pPos+=_index[\"text\"][term].tf()*log(posProbs[term]);!
 pNeg+=_index[\"text\"][term].tf()*log(negProbs[term]);!
} !
pPos+=log(posClassProb); !
pNeg+=log(negClassProb); !
classname = \"\"; !
if (pPos>pNeg){ !
 classname = \"pos\"!
} else {!
 classname = \"neg\"!
} !
return classname;!

Practical advise

- Create evaluation data	

- Write native script if you settled on one function (see
https://github.com/imotov/elasticsearch-native-script-
example)	

- Filter out as much as you can before applying scoring
function

https://github.com/imotov/elasticsearch-native-script-example

If you need only simple stuff…

- Distance functions built-in	

- boost built in	

- random function	

- field boost	

…but sometimes you need more.

rescore - basic structure EDIT

{	
 "query" : {	
 …	
 },	
 "rescore" : {	
 "window_size" : 50,	
 "query" : {	
 "rescore_query" : {	
 …	
 } }	
 }	
}

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-rescore.html

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/search-request-rescore.html

KNN

Use script scoring to define the metric	

!

Count class labels in top N results	

!

!

Scoring odysseys

!

http://www.elasticsearch.org/videos/
introducing-custom-scoring-functions/	

!

https://gist.github.com/brwe/7049473	

http://www.elasticsearch.org/videos/introducing-custom-scoring-functions/
https://gist.github.com/brwe/7049473

TODOs

- Index wide statistics, similar to
DFS_QUERY_THEN_FETCH	

- Analysis of parameter string - script execution prior to
search	

- More optimizing…

Hm…I can just use a match query and
filters, right?

“query”: !

! “match”:!

! ! “proglang”: “java”!

…

Agenda

!

!

PART 1: Text scoring for human beings	

 - How does in work in theory?	

 - How does it work in practice?	

 - How do I use it with elasticsearch?	

PART 2: How do I tweak the score?	

 - writing your own scoring function in a
script	

- function_score in general	

How to tweak the
score

Change the mapping	

!

use function_score or resorer	

write your won similarity class

So...more matching words mean higher
score, right?	

!

Why am I giving this
talk?

When do you need to
tweak?

• When you want to use field values of documents	

• You are a researcher and wanna try new method	

• You are a student and learn new things	

• When you are en expert and know that your data
cannot be properly scored by tf-idf

script scoring - LM Smilarity in 5
lines

script scoring - tfidf in 5 lines

Define a similarity in a mapping

{	

 "book":{	

 "properties":{	

 "title":{	

 "type":"string", "similarity":"BM25"	

 }	

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-core-

types.html

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/mapping-core-types.html

Customize your similarity

"similarity" : {	

 "my_similarity" : {	

 "type" : "DFR",	

 "basic_model" : "g",	

 "after_effect" : "l",	

 "normalization" : "h2",	

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/index-modules-

similarity.html

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/index-modules-similarity.html

d1: “the quick brown fox
likes brown nuts”

tf: brown

tf: fox

q: “brown fox”

d2: “the red fox”

1 2

2

1

Distance of docs and
query:	

Cosine of angle between
document vector on
query axis.

cos(!) =
~

d · ~q

|~d| · |~q|
↵

�

Relevancy - Cosine Similarity

Cosine similarity as script

"params": {!
 "field": "fieldname",!
 "words": [“word1", …]!
},!
"script": “!
!
score = 0.0; !
queryLength = 0.0; !
docLength = 0.0;!
for (word : words){ !
! tf = _index[field][word].tf(); !
! score = score + tf * 1.0; !
! queryLength = queryLength + 1.0; !
! docLength = docLength + pow(tf, 2.0);!
} !
return (float)score / !
 (sqrt(docLength) * sqrt(queryLength));!
!
"!
!

cos(!) =
~

d · ~q

|~d| · |~q|

Cosine similarity as script

"params": {!
 "field": "fieldname",!
 "words": [“word1", …]!
},!
"script": “!
!
score = 0.0; !
queryLength = 0.0; !
docLength = 0.0;!
for (word : words){ !
! tf = _index[field][word].tf(); !
! score = score + tf * 1.0; !
! queryLength = queryLength + 1.0; !
! docLength = docLength + pow(tf, 2.0);!
} !
return (float)score / !
 (sqrt(docLength) * sqrt(queryLength));!
!
"!
!

cos(!) =
~

d · ~q

|~d| · |~q|

Cosine similarity as script

"params": {!
 "field": "fieldname",!
 "words": [“word1", …]!
},!
"script": “!
!
score = 0.0; !
queryLength = 0.0; !
docLength = 0.0;!
for (word : words){ !
! tf = _index[fieldname][word].tf(); !
! score = score + tf * 1.0; !
! queryLength = queryLength + 1.0; !
! docLength = docLength + pow(tf, 2.0);!
} !
return (float)score / !
 (sqrt(docLength) * sqrt(queryLength));!
!
"!
!

cos(!) =
~

d · ~q

|~d| · |~q|

Cosine similarity as script

"params": {!
 "field": "fieldname",!
 "words": [“word1", …]!
},!
"script": “!
!
score = 0.0; !
queryLength = 0.0; !
docLength = 0.0;!
for (word : words){ !
! tf = _index[fieldname][word].tf(); !
! score = score + tf * 1.0; !
! queryLength = queryLength + 1.0; !
! docLength = docLength + pow(tf, 2.0);!
} !
return (float)score / !
 (sqrt(docLength) * sqrt(queryLength));!
!
"!
!

cos(!) =
~

d · ~q

|~d| · |~q|

Cosine similarity as script

"params": {!
 "field": "fieldname",!
 "words": [“word1", …]!
},!
"script": “!
!
score = 0.0; !
queryLength = 0.0; !
docLength = 0.0;!
for (word : words){ !
! tf = _index[fieldname][word].tf(); !
! score = score + tf * 1.0; !
! queryLength = queryLength + 1.0; !
! docLength = docLength + pow(tf, 2.0);!
} !
return (float)score / !
 (sqrt(docLength) * sqrt(queryLength));!
!
"!
!

cos(!) =
~

d · ~q

|~d| · |~q|

What is in an index?

- Bag-of-words - do not need the ordering. 	

- But what if we need the ordering?	

!

- Positions	

- Payloads	

- Offset -> co care, only used for highlighting

Token

doc: {“text”: “I am Sam, Sam I am.”}	

!

!

Tokens: ‘i’, ‘am’, ‘sam’

Explain api

If you do not understand the score:	

!

curl -XPOST "http://localhost:9200/idfidx/test/_search" -d'!

{!

 "query": {!

 "match": {!

 "location": "berlin kreuzberg"!

 }!

 },!

 "explain": true!

}'!

http://localhost:9200/idfidx/test/_search

Exciting Quiz!

https://gist.github.com/brwe/7229896

https://gist.github.com/brwe/7229896

The point is… EDIT

- Text scoring per default is tuned for natural
language text.	

- Empirical scoring formula works well for
articles, mails, reviews, etc.	

- This way to score might be undesirable if the
text represents tags.

Remember…Lucene Similarity

“I do not need that!” “Can I have the tf
squared?”

“I do not like the field
length - how can I get
rid of it?”

“I want my boost to depend on
the ratio of number of
characters and average hight of
my former gfs divided by the
number of Friday 13ths in the
last year!”

http://lucene.apache.org/core/4_0_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

“Can we not make
this idf^1.265?”

http://lucene.apache.org/core/4_0_0/core/org/apache/lucene/search/similarities/TFIDFSimilarity.html

How to tweak the
score in elasticsearch

1. function_score	

compute new score for all docs that match a certain filter	

2. rescore	

take top n documents and rescore them	

3. Write your own Similarity class and plug it in

Write your own Similarity

Pros: 	

- super fast! You cannot beat Lucene.	

Cons: 	

- It’s a plugin: need to restart node when changing the scoring function	

- It’s a plugin: must be maintained, 	

- lots of code before seeing a result	

You will want to test how well your scoring actually works before digging through Lucene
code.	

Example: https://github.com/tlrx/elasticsearch-custom-similarity-provider

https://github.com/tlrx/elasticsearch-custom-similarity-provider

function_score - basic structure

 "function_score": {	
 "(query|filter)": {},	
 "functions": [
 {	
 "filter": {},	
 "FUNCTION": {}	
 },	
 ...	
]	
 }	

Apply score computation only to docs
matching a specific filter (default

“match_all”)

Apply this function to matching docs

query or filter

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html

http://www.elasticsearch.org/guide/en/elasticsearch/reference/current/query-dsl-function-score-query.html

If you want to know more….

!

http://www.elasticsearch.org/videos/
introducing-custom-scoring-functions/	

!

https://gist.github.com/brwe/7049473	

http://www.elasticsearch.org/videos/introducing-custom-scoring-functions/
https://gist.github.com/brwe/7049473

Check if it is
already there

Use your favorite
scripting lang to
try things out

Use a native
script

Wrap in rescore

Write your own
Lucene similarity

and plug it in

Use rescore
instead of

function_score

Done!

Reconsider your
scoring?

Not fast 	

enough?

Not fast 	

enough?

Not fast 	

enough?

Not fast 	

enough?

Not fast 	

enough?

no

