
Scaling the Yelp’s logging pipeline
with Apache Kafka

Enrico Canzonieri
enrico@yelp.com @EnricoC89

mailto:enrico@yelp.com
mailto:enrico@yelp.com

Yelp’s Mission
Connecting people with great

local businesses.

Yelp Stats
As of Q1 2016

90M 3270%102M

What to expect

● High-level architecture overview
● Kafka best-practices
● No code

Logging? What is that?

A log is a stream of events

Logs provide valuable
operational and business

visibility.

Producing and consuming
logs should be easy

Logs at scale

Consuming logs becomes hard

Solution: Centralized logging!

Simple aggregation strategy: upload
all logs to a centralized datastore

Pros:
● Easy to implement (cron,

logrotate, etc)
● Unique place to access logs
Cons:
● No real time streaming
● Colocation not aggregation

Amazon S3

Log aggregation systems

Scribe
Push based architecture

Yelp’s logging pipeline V1.0

Scribe Leaf

Web app

Scribe
aggregator xinetd

Yelp Server

Log aggregator

S3 uploader

tail -follow=name
/nail/scribe/<category>/current

consumer consumerScribe Leaf

Web app

Yelp Server

Amazon S3

Why use Scribe?

● Simple to configure
● Multilang support (via Thrift)
● Stable (most of the times) and fast
● Support arbitrary message size

● No support for log consumption
● Doesn’t really scale
● No replication
● Abandoned project
● Lack of plugins

Why move away from Scribe?

Stream processing:
Statmonster

Stream processing:
Statmonster

● Statmonster is a real-time metrics pipeline
● The first stage extract multiple metrics from

each line
● Consumes most of the high volume logs

● In 2013 the metrics from high volume logs
started falling behind

● The first stage of the pipeline was too slow
to keep up with the increased volume of
logs

Stream processing:
Statmonster

● Short term solution: sample logs to
save timeliness

● Long term solution: run Statmonster
on Apache Storm.

Stream processing:
Statmonster

● Short term solution: sample logs to
save timeliness

● Long term solution: run Statmonster
on Apache Storm.

Stream processing:
Statmonster

The real bottleneck
A

gg
re

ga
to

rs

Statmonster

Statmonster

Statmonster

tail -f /nail/scribe/access

tail -f /nail/scribe/access

tail -f /nail/scribe/access

Can’t scale the consumer without increasing the number of
physical log aggregators

Need to scale the source!

Kafka into the mix

● High-throughput Publish-subscribe
messaging system

● Distributed, replicated commit log
● Client library available for a variety of

languages
● Configurable retention

Kafka Message (topic, partition, offset)

 Message

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

0 1 2 3 4 5 6 7 8

0 1 2 3 4 5 6 7 8 9 1
0

1
1

1
2

Partition
0

Partition
1

Partition
2

Old New

Topic

Kafka Producer

● Java producer is async by default
● Messages are produced in batch
● Support either at-least-once or at-

most-once semantic
● Support compression out of the

box

Kafka Consumer

● Identified by a group id
● Consumers coordinate to consume

from different partitions
● Ability to re-play messages
● Native support for offset commit

Architecture overview

Yelp’s logging pipeline V1.5

Scribe Leaf

Scribe
aggregator

Kafka consumer

Kafka consumerLegacy
consumer

Legacy
consumer

Amazon S3

Scribe Leaf Sekretar

Sekretar

● Act as a Scribe aggregator
speaking the Scribe protocol

● Produce messages to Kafka
● Map a log category into a topic
● Act as an intermediate buffer
● Handle big messages

Statmonster 2.0

Statmonster
Kafka consumer

access partition 0

Statmonster
Kafka consumer

Statmonster
Kafka consumer

access partition 1

access partition N

Yelp’s logging pipeline V2.0

Scribe Leaf

Legacy
consumer Kafka

consumerScribe Kafka
Reader

Legacy
consumer

Amazon S3

Scribe Leaf

Sekretar

Multi-regional architecture
Data center 1 Data center 2

Leaf

Aggregate
logs

consumer

Leaf

Amazon S3

Kafka
consumer

Kafka
consumer

Sekretar Sekretar

Configuration

Availability vs Consistency

Cluster side:
● Unclean leader election
● Replication factor
● Minimum in-sync replicas (ISR)
Producer side:
● acks

Disabled
unclean.leader.election.enable

3: 1 leader + 2 followers
default.replication.factor

Quorum: 3/2 + 1 = 2 min.
insync.replicas

All (or -1): all replicas in the ISR need to ack
acks

Provisioning partitions
How many partitions for a topic?

Producer

Consumer

Partition
1

Partition
2

ProducerProducer

Partition
3

Partition
1

Partition
2

Producer

Topic
1

Topic
2

Group 1

Consumer Consumer Consumer

Group 2

Consumer

Criteria 1: consumer

Consumer speed
Number of different consumer groups

Criteria 2: Kafka

Physical Limits of a single broker egress/ingress
Log retention
Recovery speed upon broker failures

Criteria 3: producer

Ingress rate into Kafka in msg/s and bytes/s

Accounting for spikes
Message rate (msg/s) percentiles: 50, 75, 90, 95, 99, 99.5

Partitions auto-creation

Regular traffic increase

Automatically increase the number of partitions based
on 99th percentile of bytes/s and msg/s over a time
window of 3 days.

Use a combined threshold of 700 msg/s and 500 KiB/s.

Tooling

https://github.com/yahoo/kafka-manager
Kafka Manager

https://github.com/yahoo/kafka-manager
https://github.com/yahoo/kafka-manager

Kafka Utils
Contains several command line tools to help
operating and maintaining a Kafka cluster.
https://github.com/Yelp/kafka-utils

● Cluster rolling restart
● Consumer offset management
● Cluster rebalance and broker decommission
● Healthchecks

https://github.com/Yelp/kafka-utils
https://github.com/Yelp/kafka-utils

Monitoring

Monitoring Sekretar
● Ingress: msg/s, bytes/s
● Egress: msg/s, (compressed) bytes/s
● Message delay
● Producer latency
● Producer memory buffer
● Timed-out message count

Monitoring Sekretar

Unhealthy
Kafka cluster

Kafka monitoring
Kafka exports metrics via jmx (http://docs.confluent.
io/1.0/kafka/monitoring.html):
● Offline partitions
● Under replicated partitions
● Controller count

Kafka-Utils includes a check for min.isr

http://docs.confluent.io/1.0/kafka/monitoring.html
http://docs.confluent.io/1.0/kafka/monitoring.html
http://docs.confluent.io/1.0/kafka/monitoring.html

Consumer monitoring

● Consumer speed (msg/s)
● Kafka speed
● Consumer lag (msg)

Consumer monitoring
Consumer slow down or
logs volume increase

Apache Kafka @ Yelp

18 clusters
~ 100 brokers
> 20K topics
~ 45K partitions
> 5TB of data per day
~ 25 Billion messages per day

@YelpEngineering

fb.com/YelpEngineers

engineeringblog.yelp.com

github.com/yelp

