

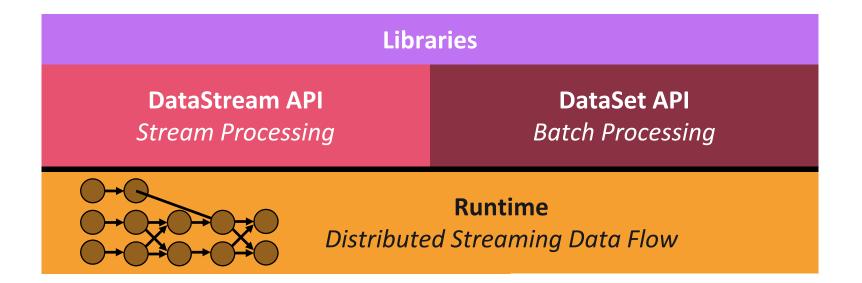
The Stream Processor as a Database

Apache Flink

Stephan Ewen @stephanewen

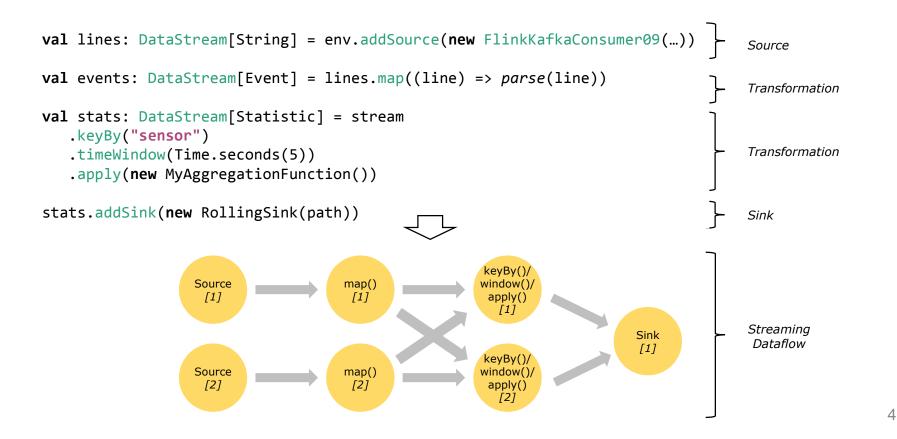
Streaming technology is enabling the obvious: continuous processing on data that is continuously produced

Apache Flink Stack

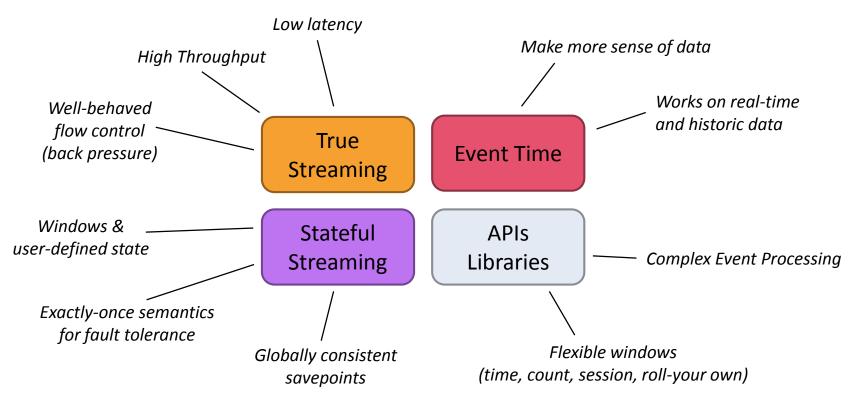


Streaming and batch as first class citizens.

Programs and Dataflows



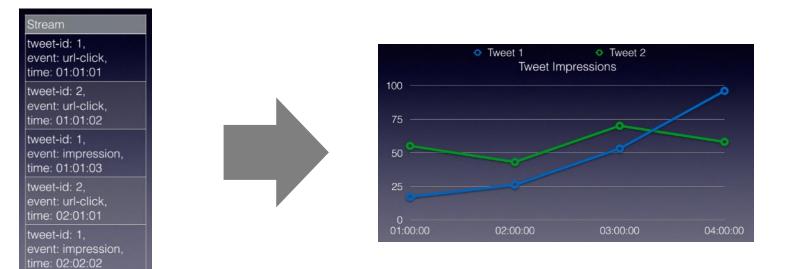
What makes Flink flink?



Realtime Counts and Aggregates

The (Classic) Use Case

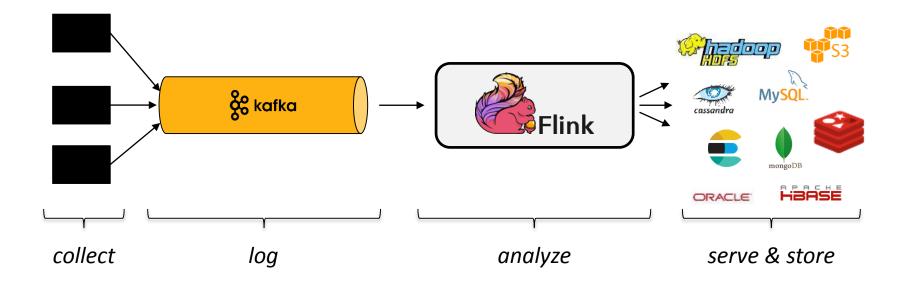
(Real)Time Series Statistics



stream of events

realtime statistics

The Architecture



case class Impressions(id: String, impressions: Long)

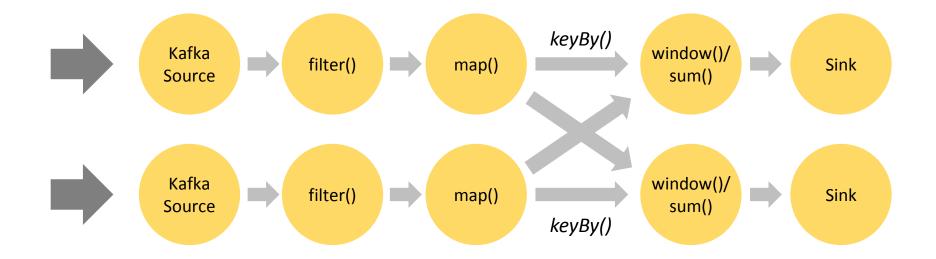
val events: DataStream[Event] =
env.addSource(new FlinkKafkaConsumer09(...))

val impressions: DataStream[Impressions] = events
.filter(evt => evt.isImpression)
.map(evt => Impressions(evt.id, evt.numImpressions)

val counts: DataStream[Impressions]= stream

- .keyBy("id")
- .timeWindow(Time.hours(1))
- .sum("impressions")

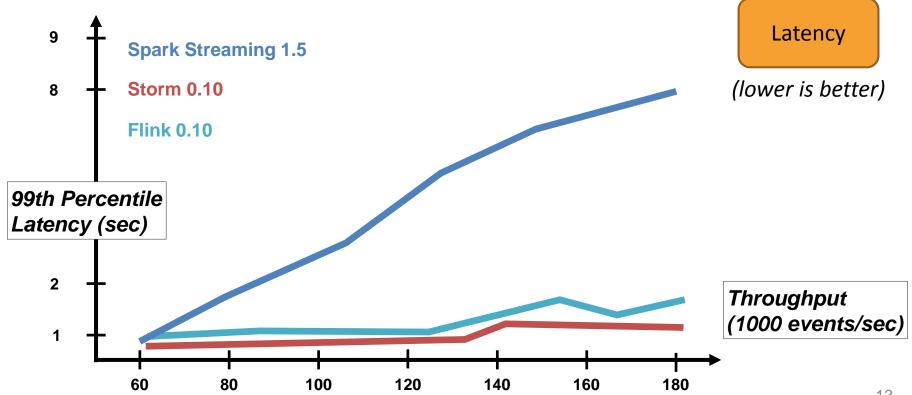
The Flink Job



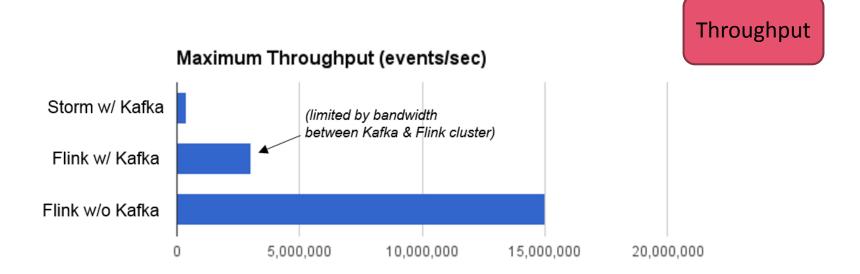
Putting it all together realtime queries Flink event time windows 80 KafkaConsumer group map() filter() Periodic trigger + watermark trigger Periodically (every second) flush new aggregates

How does it perform?

Yahoo! Streaming Benchmark



Extended Benchmark: Throughput



- 10 Kafka brokers with 2 partitions each
- 10 compute machines (Flink / Storm)
 - Xeon E3-1230-V2@3.30GHz CPU (4 cores HT)
 - 32 GB RAM (only 8GB allocated to JVMs)

- 10 GigE Ethernet between compute nodes
- 1 GigE Ethernet between Kafka cluster and Flink nodes

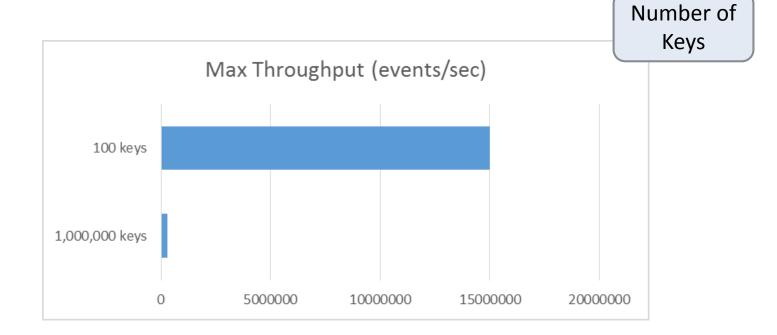
Scaling Number of Users

- Yahoo! Streaming Benchmark has 100 keys only
 - Every second, only 100 keys are written to key/value store
 - Quite few, compared to many real world use cases

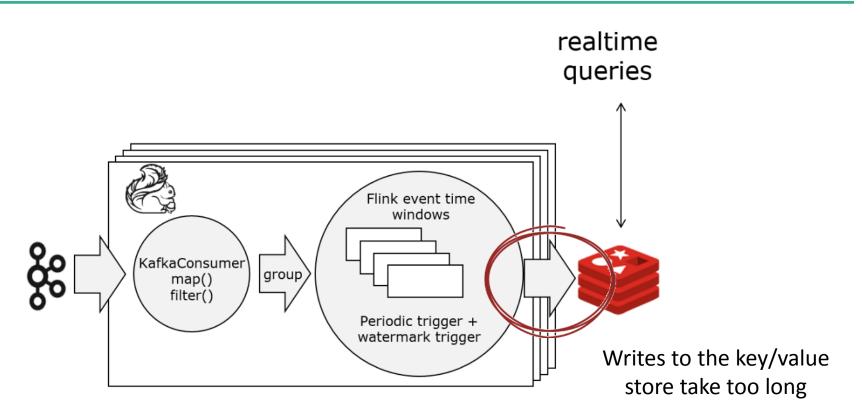
- Tweet impressions: millions keys/hour
 - Up to millions of keys updated per second

Number of Keys

Performance

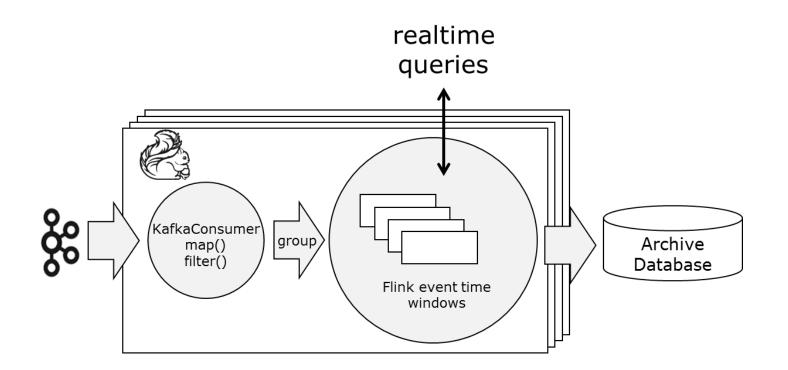


The Bottleneck

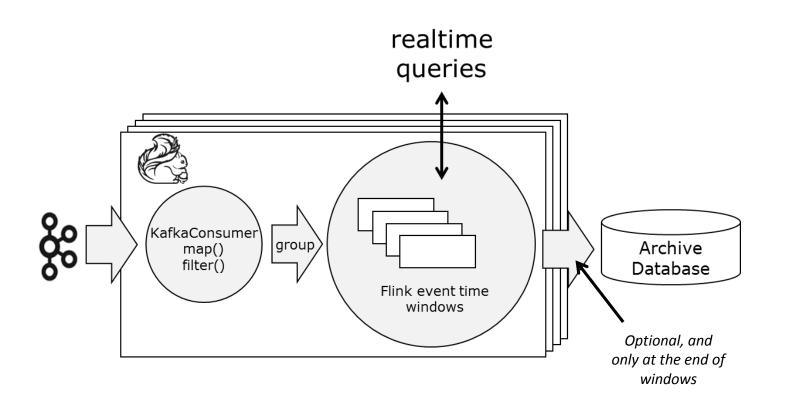


Queryable State

Queryable State



Queryable State



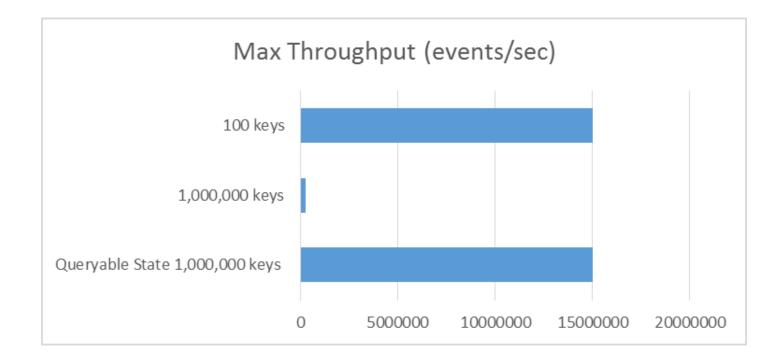
Queryable State Enablers

- Flink has state as a **first class citizen**
- State is fault tolerant (exactly once semantics)
- State is **partitioned** (sharded) together with the operators that create/update it
- State is continuous (not mini batched)
- State is scalable (e.g., embedded RocksDB state backend)

Queryable State Status

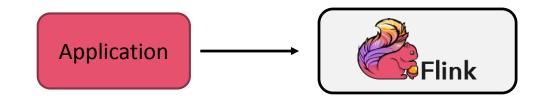
- [FLINK-3779] / Pull Request #2051 : Queryable State Prototype
- Design and implementation under evolution
- Some experiments were using earlier versions of the implementation
- Exact numbers may differ in final implementation, but order of magnitude is comparable

Queryable State Performance



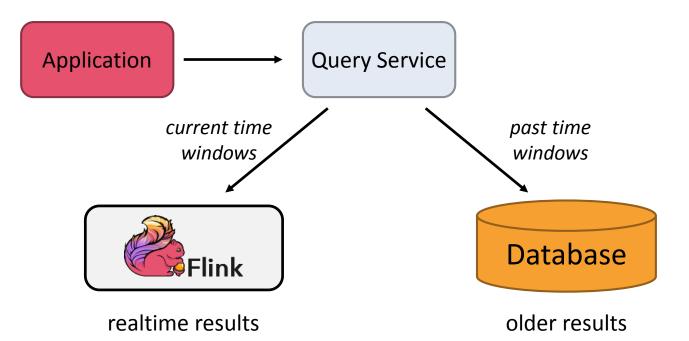
Queryable State: Application View

Application only interested in latest realtime results

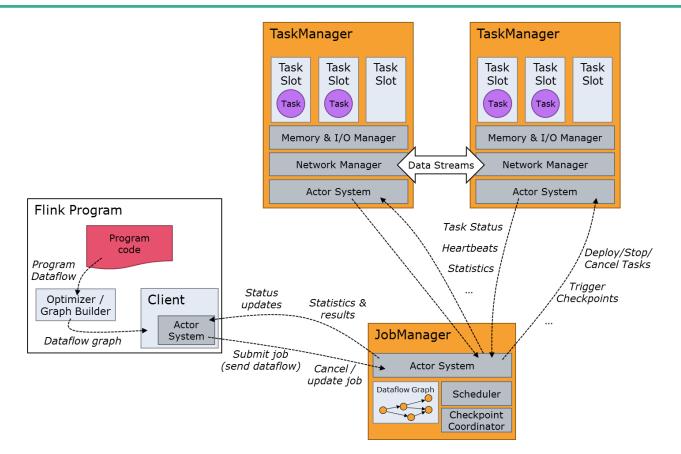


Queryable State: Application View

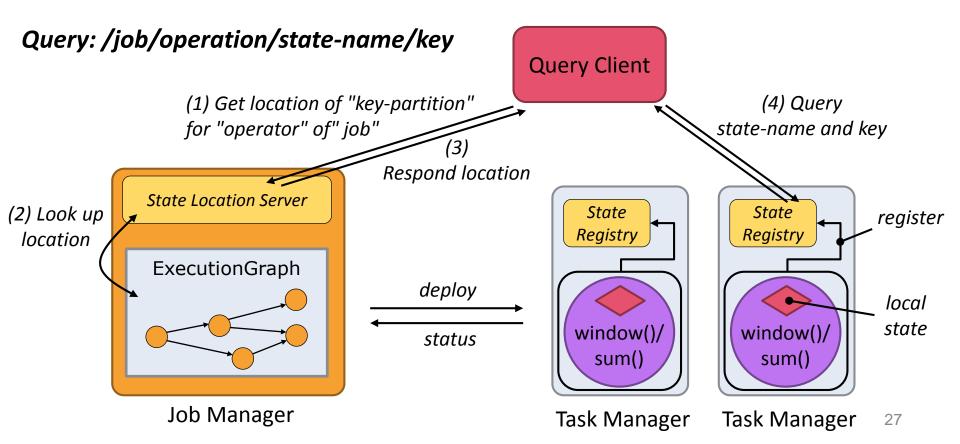
Application requires both latest realtime- and older results



Apache Flink Architecture Review



Queryable State: Implementation



Contrasting with key/value stores

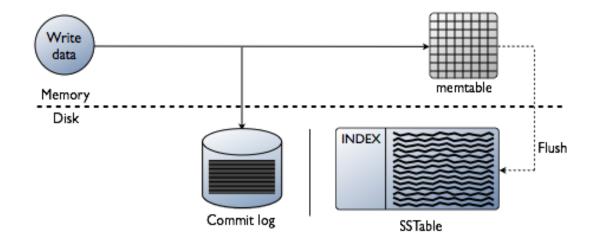
Turning the Database Inside Out

 Cf. Martin Kleppman's talks on re-designing data warehousing based on log-centric processing

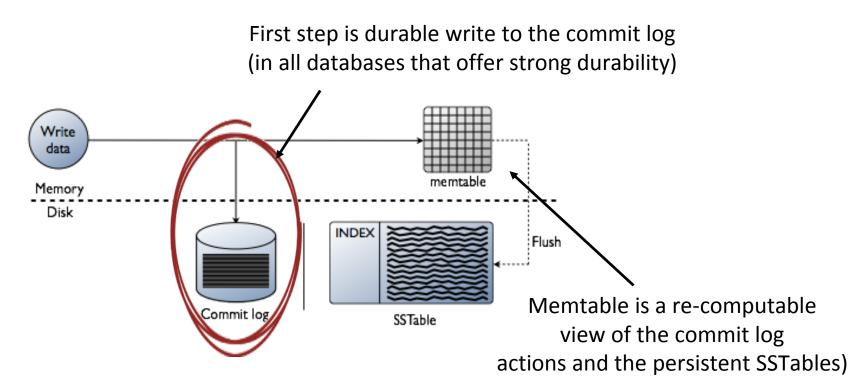
 This view angle picks up some of these concepts

Queryable State in Apache Flink = (Turning DB inside out)++

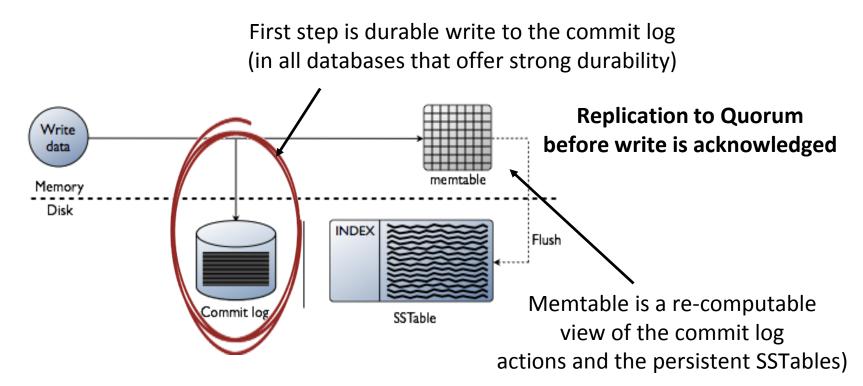
Write Path in Cassandra (simplified)



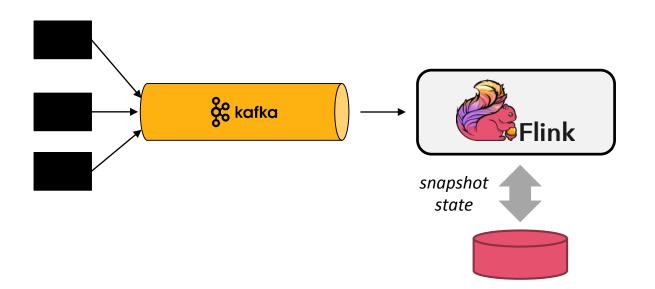
Write Path in Cassandra (simplified)



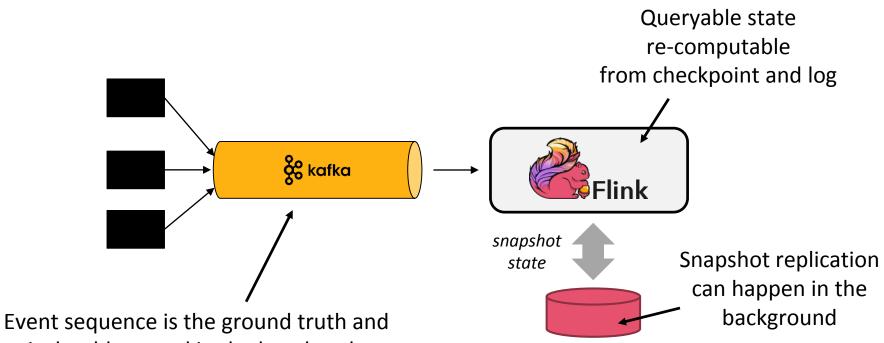
Write Path in Cassandra (simplified)



Durability of Queryable state

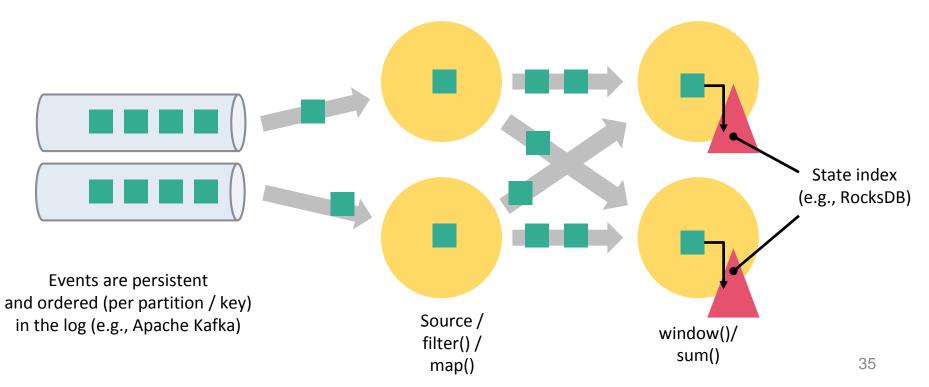


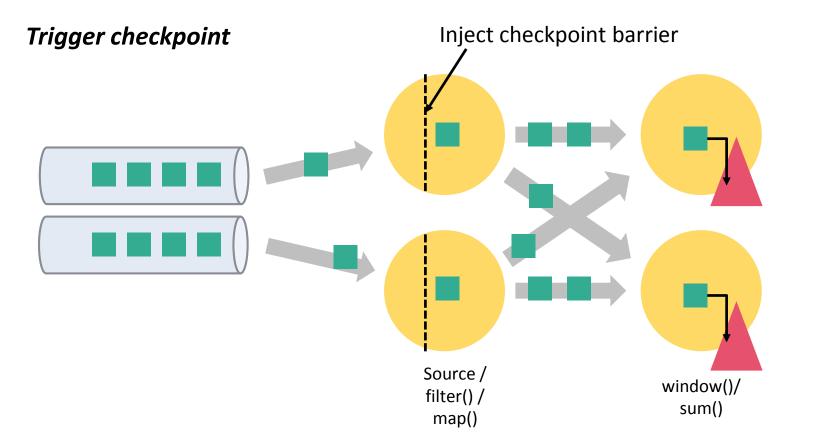
Durability of Queryable state

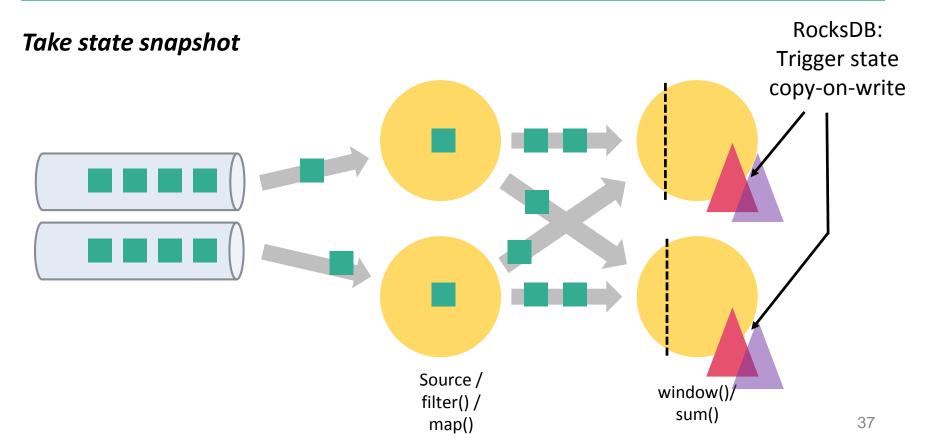


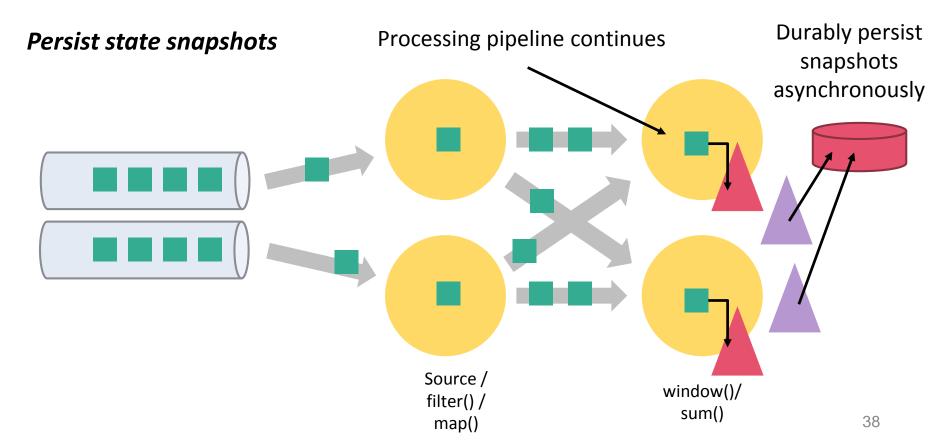
is durably stored in the log already

Events flow without replication or synchronous writes









Conclusion

- Streaming applications are often not bound by the stream processor itself. Cross system interaction is frequently biggest bottleneck
- Queryable state mitigates a big bottleneck: Communication with external key/value stores to publish realtime results
- Apache Flink's sophisticated support for state makes this possible

Takeaways

Performance of Queryable State

- Data persistence is fast with logs (Apache Kafka)
 - Append only, and streaming replication
- Computed state is fast with local data structures and no synchronous replication (*Apache Flink*)
- Flink's checkpoint method makes computed state persistent with low overhead

Go Flink!

