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Technology Transfer

* Definition (Wiki): Process of moving promising
research topics into a level of maturity ready for

bulk manufacturing or production

* Practice: Often failing due to
— Different Success Criteria (Product vs. Publication)
— No Training Programs for Technology Transfer
— Processes Are Hard to Generalize (Structure?)
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TrueSkill™

Joint work with Thore Graepel, Tom Minka & Phillip Trelford
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The Skill Rating Problem
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Two Player Match Outcome
Model

* Latent Gaussian performance model for fixed skills
* Possible outcomes: Player | wins over 2 (and vice versa)

P(yi2 = (1,2)|p1,p2) = I(p1 > p2)



Two Team Match Outcome Model

e Skill of a team is the sum of the skills of its members

P(t1|s1,s2) =N (tl; $1 + 82,2 - 52)



Multiple Team Match Outcome
Model

 Possible outcomes: Permutations of the teams

P(yltl,tg,tg) = ]I(y = (i,j, k’)) where t; > tj > tr



Multiple Team Match Outcome
Model

* But we are interested in the (Gaussian)
posterior! PGily = (1,2,3)) = N(ss ps, 07)

yi2 = (1,2) y23 = (2, 3)



Applications to Gaming

e Leaderboard

— Global ranking of all players
Mi — 3 - O

* Matchmaking

IZIsheN®N e o=@ iN) -

— For gamers: Most uncertain ol

[ 25 |
]
.
.
.

— For inference: Most informatiy
P(p: = pjlu: — 1,95

SEWICSYDE OWNS N

FATAL REVENGE
= ia 1

13X OMG Xxl
BittyTom

brian 2007
SEXY MOZES
droplates
jaCKdaSaMuRai
Il Me I
iamNightMare

a retardedD07
Perfected Brit

THE MUFFIN MANx ,

TheYunit
Mr Sushi87

P(p: = pjlp: — pnj = 0,




Experimental Setup
Data Set: Halo 2 Beta ¢

— 3 game modes
* Free-for-All
* Two Teams
e | vs. |

— > 60,000 match outcomes
— = 6,000 players
— 6 weeks of game play

— Publically available




Level

Convergence Speed

s====char (TrueSkill™)
=SQLWildman (TrueSkill ™)
= = =char (Hale 2 rank)

100

200 300
Number of
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Winning probability

Convergence Speed (ctd.)

100%

char wins
= SQLWildman wins

80% Both players draw
0% =TT T T T T ““! YA
40%
20% |
5/8 games won by char
O%O | 60 200 360 460 500

Number of games played
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Graphical Models

* Definition: Graphical representation of joint probability

distribution
— Nodes: O=Variab|es
— Edges: Relationship between variables

e Variables:
— Observed Variables: Data

— Unobserved Variables:‘Causes’ + Temporary/Latent

* Key Questions:
— (Conditional) Dependency: pla.ble) = plale) - p(ble)
— Inference/Marginalisation: p(a,b) = 3 p(a,b,e)



Directed Models: Bayesian
Networks

* Definition: Graphical representation of joint probability
distribution (Pearl, 1988)

— Nodes: O = Variables
— Directed Edges: Conditional probability distribution

e Semantic:
p(x) = Hp(milxparents(i)>

— Ancestral relationship of dependency

p(aaba C) - p(a> p(b) -p(c|a,b)



Factor Graphs

* Definition: Graphical representation of product
structure of a function (Wiberg, 1996)

— Nodes: B = Factors O = Variables
— Edges: Dependencies of factors on variables.

e Semantic:
p(x) = 1;If<XV(f))

— Local variable dependency of factors
p(a,b,c) = fi(a) - f2(b) - f3(a,b,c)



Factor Graphs and Bayes’ Law

p(s1) (s) -32)

* Bayes’ law

p(sly) o< p(yls) - p(s)
p(t1]s1)

* Factorising prior

p(s) = p(s1) - -p(s2)
p(d|t1,t2)

* Factorising likelihood
p(y, t,d|s) = Hp(ti|3i)'p(d|t17t2)'p(y|d)
1 p(y|d)
* |nference: Sum out latent variables
p(yls) = D > »(y,t,d|s)

t d



messages from nelghbourlng factors to variable!




Messages: From Factors To Variables

variables!



Messages: From Variables To Factors

fo(w,X)

mf3—>sc(33) mf4—+m(33)

f4(x,2)

o)

€S pass on the nlgele INCOMINE

messages!



The Sum-Product Algorithm
* Three update equations (Aji & McEliece, 1997)

p(t) = ]I mp:(®)
fEE
mf—>t1(t1) = ZZ"'Zf(tl?t2at37°'°) H mti—>f(t7j)
to t3 tn 2>1
my_, ((2) = II  myp e (®)
Fi€EN{S}

* Update equations can be directly derived from the
distributive law.

* Calculate all marginals at the same time!

* Only need to pass messages twice along each edge!



Approximate Message Passing

gy £ () mf () p(t)

>

—




Efficient Approximate Inference
Gaussian Prior Factors

Fast and efficient approximate message passing
using Expectation Propagation

http://blogs.technet.com/b/apg/archive/
2008/06/1 6/trueskill-in-f.aspx

Rankl‘@z}fi kelihoocF@ftors ‘
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Xbox Live Activity viewer
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Skill Distributions of Online
Games

N I Golf (18 holes): 60 levels

Frequency

Car racing (3-4 laps): 40 levels f i -

UNO (chance game): |0 levels
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Halo 3 in Action




Tools for Halo 3

* Questions

— Controllable player skill progression (slow-down!)

— Controllable skill distributions (re-ordering)
* Simulations

— Large scale simulation of > 8,000,000,000 matches

— Distributed application written in C# using .Net remoting
* Tools

— Result viewer (Logged results: 52 GB of data)

— Real-time simulator of partial update



Halo 3 Simulation Result Viewer
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Halo 3 Partial Update Analyser

Code size: 2600 LOC

— o]
P Halo 3 Delta Partial Update Analyser 3.0 |
D - = =
iEERE= |

= ’ ~ Censored

— Real time changes



Halo 3 Public Beta Analysis
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Xbox 360 & Halo 3

Xbox 360 Live
— Launched in September 2005
— Every game uses TrueSkill™ to match players
— > 10 million players
— > 2 million matches per day
> 2 billion hours of gameplay
Halo 3
— Launched on 25t September 2007

— Largest entertainment launch in history
— > 200,000 player concurrently (peak: 1,000,000)
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* Lessons Learned:
|. Pure research takes a short amount of time
2. Development takes much longer than planned
3. Counter-factual analysis and metrics are important
4. Develop for scale from Day |



adPredictor

Joint work with Thore Graepel, Joaquin Quinonero Candela, Onno Zoeter, Tom Borchert , Phillip Trelford
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Why Predict Probability-of-Click?

"€ Live Search: Seattle - Windows Internet Explorer

%v ':‘,’ http://search.live.com/results.aspx?q=Seattle&mkt=en-gb&FORM=LVCP - | +y | x | l Live Search 2 |
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Seattle Washington

Seattle Mariners
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Craigs List Seattle

Seattle Seahawks

www_nextag.com/hotels
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The Flow of Information

The image cannot be displayed. Your computer may not have enough memory to open the
mage, or the image may have been corrupted. Restart your computer, and then open the file
again. If the red x still appears, you may have to delete the image and then insert it again

User interaction
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Raw Logs

* Why structured data?
— Data validation and cleaning
— Principled feature transformations

Structured Data
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SQL Schema Generator

Code size: 500 LOC
Project size: | file
Development time: 2 weeks

Features
— Code defines the schema (unlike LINQ)!

— High-performance insertion via computed bulk-insertion with
automated key propagation

— Code sample is now part of the F# distribution



Strong Typing and SQL Datastores

/// A single page-view /// Different types of media
type PageView = type MediumType =
{ | PaidSearch
ClientDateTime : DateTime | ContextualSearch
/// Create the SQL schema
let schema = bulkBuild ("cpidssdml8", “Cambridge", “JunelO")

/// Try to open the CSV file and read it pageview by pageview
File.OpenTextReader “HourlyRelevanceFeed.csv"
|> Seq.map (fun s -> s.Split [|','|])
|> Seq.chunkBy (fun xs -> xs.[0])
|> Seq.iteri (fun i (rguid,xss) ->
/// Write the current in-memory bulk to the Sgl database
if i % 10000 = 0 then
schema.Flush ()

/// Get the strongly typed object from the list of CSV file lines
let pageView = PageView.Parse xss

/// Insert it

pageView |> schema.Insert
)
/// One final flush
schema.Flush ()

T.ocationMetroArea - int i



Uncertainty: Bayesian Probabilities

102.34.12.20 1 e e
15.70.165.9

Client IP
221.98.2.187

92.154.3.86
+ p(pClick)

Match  Exact Match
Type Broad Match

Position SB-1

SB-2




Training Algorithm in Action

—> Prediction
E Training/Update




Inference: An Optimization View
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Actual CTR

Offline Evaluation
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10.00%' C
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Predicted CTR

©® adPredictor

® mu-Lambda



Client IP: Mean & Variance

ClientIP Parameters
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UserAgent: Mean Posterior Effects

User Agent Feature

MetaSearch

FileTransfer

Bot

FEX

OperaNonLinux

N
Linux

FireFoxNonLinux
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Distributed Conditional Models

Belief Store
(“Memory”)

Message Passing
(“Communicate”

Data Messages
(“Compute”)




Relation to Map-Reduce

° Map_Reduce p(0|x7 Y) X H fk(Yklea Xk) : p(@)
k
— Map: Data nodes compute
messages Mg, _,q from data Y, and =4
Mo_F,

— Reduce: Combine messages Mg, _,,
into p(8) by multiplication
— Vanilla MR is a single pass only!
* Caveats:

— Approximate data factors need all
incoming message Mg, _,q!

— Each machine needs to be able to
store the belief over 6
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Online Metrics

Naive Bayes

—— LogScore

—— CTRLogScore

~d— LOogScoreGain
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Bayesian Probit Regression

~—o—LogScore

~—— CTRLogScore

—#—LogScoreGain
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* Lessons Learned:
|. Pure research takes a short amount of time
2. Development takes much longer than planned
3. Metrics are are important and part of the transfer
4. Develop for scale from Day |



Technology Transfer in Numbers

100%
80%
60% . Evangelisation
s Development
40% Research
20% ) 7 Problem ldentification
0%

TrueSkill AdPredictor
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Process Lessons

* Identify the problem * Do not study the * Reduce risk!
* |dentify the existing literature ¢ Understand the
customer first! decision and
« Be the customer! * Don’t be afraid to engineering process
be wrong * Respect timelines

|' ||
\ A \

* Write code! * Simplify to its bare * Be in for the long

« Work with minimum. haul — years is
developers — not * Develop tools and normal
executives! help adoption with * Do not aim for a

customers quick win!




Process Lessons: Pictures

Steps Time Allocation

Data Acquisition

Data Acquisition

N~
Learning Predictive Models
Feature Engineering Feature Engineering
|
-
Measuring Models Measuring Models

~
Operational SupportTools Operational SupportTools

Learning Predictive Models




Technical Lessons: Practical Problems

Ideal

* Business case well defined
* Data pipeline established

* Training set given

* Business metric/loss given
* Meaning of data fields fixed

* Breakthrough impact
through ML algorithm

Reality
Business case unclear
Irregular data-file drops
No training set
Unclear measure impact
Missing & inconsistent data

ML algorithm leads to single
digit improvement at best



How to Pick a Practical ML

Problem
* Key Questions:
I. Data:Will we have sufficient and ongoing data?
2. Complexity: Can a simple rule do as well?

3. Customer Experience: How will the customer
see the prediction/summarization? What will it
impact?

4. Economics:What's the cost and benefit of a single
prediction!?



Example of Practical ML Problems

Good Bad
* Click-Through-Rate * Data: Prediction of
Prediction mushroom/flower types

 Complexity: Learning to
predict imputed data

* Customer Experience:
Predictive menus

* Demand Forecasting
* Named Entity Extraction
* Fraud Prediction

* Economics: Complex, non-
linear models for advertising



Conclusion

Technology Transfer is Highly Rewarding!
Practical problems start new research directions!

Graphical models are a very powerful language:
— Modeling (Bayes Nets)

— Algorithm development (Sum-Product)

— Highly modular (Local Factors)

— (Relatively) easy to teach (Pictorial)

Machine Learning = “Statistic of Big Data’?



