
Time Series Data With
Apache Cassandra

Berlin Buzzwords
May 27, 2014

Eric Evans
eevans@opennms.org

@jericevans

mailto:eevans@opennms.org
mailto:eevans@opennms.org

Open

Open

Open

Open

Network

Management

System

OpenNMS: What It Is

● Network Management System
○ Discovery and Provisioning
○ Service monitoring
○ Data collection
○ Event management, notifications

● Java, open source, GPLv3
● Since 1999

Time series: RRDTool

● Round Robin Database
● First released 1999
● Time series storage
● File-based, constant-size, self-maintaining
● Automatic, incremental aggregation

… and oh yeah, graphing

Consider

● 5+ IOPs per update (read-modify-write)!
● 100,000s of metrics, 1,000s IOPS
● 1,000,000s of metrics, 10,000s IOPS
● 15,000 RPM SAS drive, ~175-200 IOPS

Hmmm

We collect and write a great deal; We read
(graph) relatively little.

So why are we aggregating everything?

Also

● Not everything is a graph
● Inflexible
● Incremental backups impractical
● Availability subject to filesystem access

TIL

Metrics typically appear in groups that are
accessed together.

Optimizing storage for grouped access is a
great idea!

What OpenNMS needs:

● High throughput
● High availability
● Late aggregation
● Grouped storage/retrieval

Cassandra

● Apache top-level project
● Distributed database
● Highly available
● High throughput
● Tunable consistency

SSTables

Writes

Commitlog

Memtable

SSTable

Disk
Memory

Write Properties

● Optimized for write throughput
● Sorted on disk
● Perfect for time series!

Partitioning

A

B

C

Key: Apple

...

AZ

Placement

A

B

C

Key: Apple

...

Replication

A

B

C

Key: Apple

...

CAP Theorem

Consistency

Availability

Partition tolerance

Consistency

A

B

?

W=2

Consistency

?

B

C

R=2

R+W > N

Distribution Properties

● Symmetrical
● Linearly scalable
● Redundant
● Highly available

D ata odelM

Data Model
resource

Data Model
resource

T1 T2 T3

Data Model
resource

T1

M1 M2

V1 V2

M3

V3

T2

M1 M2

V1 V2

M3

V3

T3

M1 M2

V1 V2

M3

V3

Data Model

CREATE TABLE samples (
 T timestamp,

 M text,

 V double,

 resource text,

 PRIMARY KEY(resource, T, M)
);

Data model

V1T1 M1 V2T1 M2 T1 V3M3resource

Data model

SELECT * FROM samples
WHERE resource = ‘resource’
AND T = ‘T1’;

V1T1 M1 V2T1 M2 T1 V3M3resource

Data model

T1 M1 V1resource

V1T1 M1 V2T1 M2 T1 V3M3resource

Data model

T1 M1 V1

T1 M2 V2

resource

resource

V1T1 M1 V2T1 M2 T1 V3M3resource

Data model

T1 M1 V1

T1 M2 V2

T1 M3 V3

resource

resource

resource

V1T1 M1 V2T1 M2 T1 V3M3resource

Data model

SELECT * FROM samples
WHERE resource = ‘resource’
AND T >= ‘T1’ AND T <= ‘T3’;

V1T1 M1 V1T2 M1 T3 V1M1resource

Newts

● Standalone time series data-store
● Raw sample storage and retrieval
● Flexible aggregations (computed at read)

○ Rate (counter types)
○ Functions pluggable
○ Arbitrary calculations

● Cassandra-speed

http://github.com/OpenNMS/newts

Newts

● Java API
● REST interface
● Apache licensed
● Github (http://github.com/OpenNMS/newts)

http://github.com/OpenNMS/newts
http://github.com/OpenNMS/newts

Fin

