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OpenNMS: What It Is

● Network Management System
○ Discovery and Provisioning
○ Service monitoring
○ Data collection
○ Event management, notifications

● Java, open source, GPLv3
● Since 1999



Time series: RRDTool

● Round Robin Database
● First released 1999
● Time series storage
● File-based, constant-size, self-maintaining
● Automatic, incremental aggregation



… and oh yeah, graphing



Consider

● 5+ IOPs per update (read-modify-write)!
● 100,000s of metrics, 1,000s IOPS
● 1,000,000s of metrics, 10,000s IOPS
● 15,000 RPM SAS drive, ~175-200 IOPS





Hmmm

We collect and write a great deal; We read 
(graph) relatively little.

So why are we aggregating everything?



Also

● Not everything is a graph
● Inflexible
● Incremental backups impractical
● Availability subject to filesystem access



TIL

Metrics typically appear in groups that are 
accessed together.

Optimizing storage for grouped access is a 
great idea!



What OpenNMS needs:

● High throughput
● High availability
● Late aggregation
● Grouped storage/retrieval



Cassandra

● Apache top-level project
● Distributed database
● Highly available
● High throughput
● Tunable consistency
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Write Properties

● Optimized for write throughput
● Sorted on disk
● Perfect for time series!
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CAP Theorem

Consistency

Availability

Partition tolerance
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Distribution Properties

● Symmetrical
● Linearly scalable
● Redundant
● Highly available
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Data Model

CREATE TABLE samples (
    T timestamp,

    M text,

    V double,

    resource text,

    PRIMARY KEY(resource, T, M)
);



Data model
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Data model

SELECT * FROM samples
WHERE resource = ‘resource’
AND T = ‘T1’;

V1T1 M1 V2T1 M2 T1 V3M3resource
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Data model

SELECT * FROM samples
WHERE resource = ‘resource’
AND T >= ‘T1’ AND T <= ‘T3’;

V1T1 M1 V1T2 M1 T3 V1M1resource



Newts

● Standalone time series data-store
● Raw sample storage and retrieval
● Flexible aggregations (computed at read)

○ Rate (counter types)
○ Functions pluggable
○ Arbitrary calculations

● Cassandra-speed

http://github.com/OpenNMS/newts


Newts

● Java API
● REST interface
● Apache licensed
● Github (http://github.com/OpenNMS/newts)

http://github.com/OpenNMS/newts
http://github.com/OpenNMS/newts
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