
Event Sourcing at Yammer 
Michał Rutkowski (mrutkowski@yammer-inc.com) 
Dmitry Stratiychuk (dstratiychuk@yammer-inc.com) 
Philipp Fehre (pfehre@yammer-inc.com) 



What is this talk about? 

•  Challenges Yammer faced
•  Why event sourcing?
•  How we’ve rolled it out
•  What we’ve learned
•  The future



What is this talk about? 

•  Challenges Yammer faced
•  Why event sourcing?
•  How we’ve rolled it out
•  What we’ve learned
•  The future



What is this talk about? 

•  Challenges Yammer faced
•  Why event sourcing?
•  How we’ve rolled it out
•  What we’ve learned
•  The future



What is this talk about? 

•  Challenges Yammer faced
•  Why event sourcing?
•  How we’ve rolled it out
•  What we’ve learned
•  The future



What is this talk about? 

•  Challenges Yammer faced
•  Why event sourcing?
•  How we’ve rolled it out
•  What we’ve learned
•  The future



What is Yammer? 

An Enterprise Social Network facilitating better and faster 
communication within an organization.



What is important? 

•  Our customers:
– SLA
– Performance

•  Velocity: Ability to build and A/B test features fast



What is important? 

•  Our customers:
– SLA
– Performance

•  Velocity: Ability to build and A/B test features fast



The Team 

We want to help rest of the engineering team in:
•  building quality features fast,
•  while meeting our SLA commitments

To that end we:
•  drive discussion and adoption of architectural patterns
•  adopt and if necessary build tooling to facilitate that



The Team 

We want to help rest of the engineering team in:
•  building quality features fast,
•  while meeting our SLA commitments

To that end we:
•  drive discussion and adoption of architectural patterns
•  adopt and if necessary build tooling to facilitate that



Things we’ve been working on 

•  Better tooling and process for release management:
– Continuous delivery
– Load testing 

•  Best practices for service design and development:
– Testing for failure
– Ensuring QoS

•  Inter-service integration patterns



Things we’ve been working on 

•  Better tooling and process for release management:
– Continuous delivery
– Load testing 

•  Best practices for service design and development:
– Testing for failure
– Ensuring QoS

•  Inter-service integration patterns



Things we’ve been working on 

•  Better tooling and process for release management:
– Continuous delivery
– Load testing 

•  Best practices for service design and development:
– Testing for failure
– Ensuring QoS

•  Inter-service integration patterns



Things we’ve been working on 

•  Better tooling and process for release management:
– Continuous delivery
– Load testing 

•  Best practices for service design and development:
– Testing for failure
– Ensuring QoS

•  Inter-service integration patterns



Familiar Story 



Familiar Story 



Familiar Story 



Familiar Story 



Familiar Story 



Familiar Story 



Familiar Story 

That was mid-2013



Familiar Story 

No one even tries to draw this diagram now!



Issues we’ve faced 

Feature development become too slow:
•  Too many inter-service dependencies
•  Overly chatty services
•  Too many inter-team, cross-time-zone dependencies



Issues we’ve faced 

Feature development become too slow:
•  Too many inter-service dependencies
•  Overly chatty services
•  Too many inter-team, cross-time-zone dependencies



Issues we’ve faced 

Feature development become too slow:
•  Too many inter-service dependencies
•  Overly chatty services
•  Too many inter-team, cross-time-zone dependencies



Issues we’ve faced 

Meeting the SLA become much harder:
•  Too many external dependencies on the read/write path
•  Shared DB
•  Un-expected, transitive dependencies
•  Cascading failures (despite circuit breaking)
•  Very easy to make a breaking code change



Issues we’ve faced 

Meeting the SLA become much harder:
•  Too many external dependencies on the read/write path
•  Shared DB
•  Un-expected, transitive dependencies
•  Cascading failures (despite circuit breaking)
•  Very easy to make a breaking code change



Issues we’ve faced 

Meeting the SLA become much harder:
•  Too many external dependencies on the read/write path
•  Shared DB
•  Un-expected, transitive dependencies
•  Cascading failures (despite circuit breaking)
•  Very easy to make a breaking code change



Issues we’ve faced 

Meeting the SLA become much harder:
•  Too many external dependencies on the read/write path
•  Shared DB
•  Un-expected, transitive dependencies
•  Cascading failures (despite circuit breaking)
•  Very easy to make a breaking code change



Issues we’ve faced 

Meeting the SLA become much harder:
•  Too many external dependencies on the read/write path
•  Shared DB
•  Un-expected, transitive dependencies
•  Cascading failures (despite circuit breaking)
•  Very easy to make a breaking code change



Event Sourcing 



Event Sourcing 

•  One Data Owner Service 
– Publishes Events
– Persists in DB

•  View Services
– Consume Events
– Materialized Views (local DB)



Event Sourcing 

•  One Data Owner Service 
– Publishes Events
– Persists in DB

•  View Services
– Consume Events
– Materialized Views (local DB)



Distributed Monolith 



Event Sourcing 



Event Sourcing 

•  Less runtime dependencies (SLA, performance)
•  Less chattiness (performance, velocity)
•  Loose Coupling (velocity, SLA)
•  Events / Not Commands – (velocity vs. 1-1 coupling)
•  Cheap to setup/backfill new service (velocity)



Event Sourcing 

•  Less runtime dependencies (SLA, performance)
•  Less chattiness (performance, velocity)
•  Loose Coupling (velocity, SLA)
•  Events / Not Commands – (velocity vs. 1-1 coupling)
•  Cheap to setup/backfill new service (velocity)



Event Sourcing 

•  Less runtime dependencies (SLA, performance)
•  Less chattiness (performance, velocity)
•  Loose Coupling (velocity, SLA)
•  Events / Not Commands – (velocity vs. 1-1 coupling)
•  Cheap to setup/backfill new service (velocity)



Event Sourcing 

•  Less runtime dependencies (SLA, performance)
•  Less chattiness (performance, velocity)
•  Loose Coupling (velocity, SLA)
•  Events / Not Commands – (velocity vs. 1-1 coupling)
•  Cheap to setup/backfill new service (velocity)



Event Sourcing 

•  Less runtime dependencies (SLA, performance)
•  Less chattiness (performance, velocity)
•  Loose Coupling (velocity, SLA)
•  Events / Not Commands – (velocity vs. 1-1 coupling)
•  Cheap to setup/backfill new service (velocity)



Challenges 

•  We can’t make it happen overnight
•  There are a lot of risks:

– Can this pattern deliver?
– How long will it take to learn?
– What stack to use?
– Cost of tech onboarding?



Challenges 

•  We can’t make it happen overnight
•  There are a lot of risks:

– Can this pattern deliver?
– How long will it take to learn?
– What stack to use?
– Cost of tech onboarding?



Two challenges 

•  Validate Event Sourcing 
•  Choose and on-board appropriate tech stack

Ideally we can decouple the two, to:
•  Validate early
•  Deliver value early
•  Invest in tech once idea validated



Two challenges 

•  Validate Event Sourcing 
•  Choose and on-board appropriate tech stack

Ideally we can decouple the two, to:
•  Validate early
•  Deliver value early
•  Invest in tech once idea validated



Our approach 

Leverage familiar legacy to minimize tech risk.



Our approach 

•  Not the greatest design:
– centralization
– http proxies, why?

•  Built of familiar components we are already operating
•  Minimizes tech risk, letting us focus on validation
•  Short term, centralization allows for faster iteration



Our approach 

•  Not the greatest design:
– centralization
– http proxies, why?

•  Built of familiar components we are already operating
•  Minimizes tech risk, letting us focus on validation
•  Short term, centralization allows for faster iteration



Our approach 

•  Not the greatest design:
– centralization
– http proxies, why?

•  Built of familiar components we are already operating
•  Minimizes tech risk, letting us focus on validation
•  Short term, centralization allows for faster iteration



Our approach 

•  Not the greatest design:
– centralization
– http proxies, why?

•  Built of familiar components we are already operating
•  Minimizes tech risk, letting us focus on validation
•  Short term, centralization allows for faster iteration



What did we build? 

•  We’ve established an API and semantics
•  Tooling for consumer/event monitoring/management
•  End-to-end test suite (focus on failure handling)
•  Automated load and throughput tests

Will help us in the future, when we want to iterate on the 
tech stack.



What did we build? 

•  We’ve established an API and semantics
•  Tooling for consumer/event monitoring/management
•  End-to-end test suite (focus on failure handling)
•  Automated load and throughput tests

Will help us in the future, when we want to iterate on the 
tech stack.



What did we build? 

•  We’ve established an API and semantics
•  Tooling for consumer/event monitoring/management
•  End-to-end test suite (focus on failure handling)
•  Automated load and throughput tests

Will help us in the future, when we want to iterate on the 
tech stack.



What did we build? 

•  We’ve established an API and semantics
•  Tooling for consumer/event monitoring/management
•  End-to-end test suite (focus on failure handling)
•  Automated load and throughput tests

Will help us in the future, when we want to iterate on the 
tech stack.



What did we build? 

•  We’ve established an API and semantics
•  Tooling for consumer/event monitoring/management
•  End-to-end test suite (focus on failure handling)
•  Automated load and throughput test

Will help us in the future, when we want to iterate on the 
tech stack.



Easy to generate dashboards 



Troubleshooting bad events 



Projects that benefited immediately 



Problems we’ve faced 

•  What to publish?
– Whole pieces of data (potentially unbounded size)
–  IDs, but requires:

•  Immutable versioned data
•  Uniform Resource Identifiers (REST done well)

•  There will be multiple publishers
–  Consumers need to deal with it gracefully



Problems we’ve faced 

•  What to publish?
– Whole pieces of data (potentially unbounded size)
–  IDs, but requires:

•  Immutable versioned data
•  Uniform Resource Identifiers (REST done well) 

•  There will be multiple publishers
–  Consumers need to deal with it gracefully



Adoption Challenges 

•  It is a big paradigm shift, it takes time for knowledge to 
propagate through an organization

•  We are not experts either, we are still learning
•  But good news, even if imperfect, it already had big 

impact on how we work



Adoption Challenges 

•  It is a big paradigm shift, it take time for knowledge to 
propagate through an organization

•  We are not experts either, we are still learning
•  But good news, even if imperfect, it already had big 

impact on how we work



Adoption Challenges 

•  It is a big paradigm shift, it take time for knowledge to 
propagate through an organization

•  We are not experts either, we are still learning
•  But good news, even if imperfect, it already had big 

impact on how we work



What we’ve discovered - Workflows 



What we’ve discovered - Workflows 



What we’ve discovered - Workflows 



Workflows 

•  Transformation logic outside of view service boundaries
•  Stream Processing / CQRS
•  We can express them, but too much plumbing
•  We need a higher level of abstraction



Workflows 

•  Transformation logic outside of view service boundaries
•  Stream Processing / CQRS
•  We can express them, but too much plumbing
•  We need a higher level of abstraction



Workflows 

•  Transformation logic outside of view service boundaries
•  Stream Processing / CQRS
•  We can express them, but too much plumbing
•  We need a higher level of abstraction



Workflows 

•  Transformation logic outside of view service boundaries
•  Stream Processing / CQRS
•  We can express them, but too much plumbing
•  We need a higher level of abstraction



What is the Future? 

•  Move to a fully managed solution
•  Provide Rx bindings
•  Remove centralization/http proxy components
•  Find a solution for Workflows



Migration To Event Hubs 

Azure Event Hubs
•  Event Log offering from Azure (Kafka, Kinesis)

– Automated failover within a region
– No provisioning concerns, simply purchase TUs

•  AMQP 1.0 protocol
•  Successfully used internally and externally
•  Our Metrics pipeline already uses it



Migration To Event Hubs 

Azure Event Hubs
•  Event Log offering from Azure (Kafka, Kinesis)

– Automated failover within a region
– No provisioning concerns, simply purchase TUs

•  AMQP 1.0 protocol
•  Successfully used internally and externally
•  Our Metrics pipeline already uses it



Migration To Event Hubs 

Azure Event Hubs
•  Event Log offering from Azure (Kafka, Kinesis)

– Automated failover within a region
– No provisioning concerns, simply purchase TUs

•  AMQP 1.0 protocol
•  Successfully used internally and externally
•  Our Metrics pipeline already uses it



Migration To Event Hubs 

Azure Event Hubs
•  Event Log offering from Azure (Kafka, Kinesis)

– Automated failover within a region
– No provisioning concerns, simply purchase TUs

•  AMQP 1.0 protocol
•  Successfully used internally and externally
•  Our Metrics pipeline already uses it



RxJava SDK 

•  Using Azure SDK 
– backed by ProtonJ
– Offset tracking
– Multi-host Consumer with Failover

•  Raising the level of abstraction:
– Data Stream in Event Hubs available as an Observable



RxJava SDK 

•  Using Azure SDK 
– backed by ProtonJ
– Offset tracking
– Multi-host Consumer with Failover

•  Raising the level of abstraction:
– Data Stream in Event Hubs available as an Observable



Workflows 

•  Azure Service Fabric Reliable Actors
•  High Level PAAS offering from Azure
•  Based on Project Orleans
•  Successfully used by HALO



Workflows 

•  Azure Service Fabric Reliable Actors
•  High Level PAAS offering from Azure
•  Based on Project Orleans
•  Successfully used by HALO



Workflows 

•  Azure Service Fabric Reliable Actors
•  High Level PAAS offering from Azure
•  Based on Project Orleans
•  Successfully used by HALO



Workflows 

•  Azure Service Fabric Reliable Actors
•  High Level PAAS offering from Azure
•  Based on Project Orleans
•  Successfully used by HALO



Summary 

•  Successfully used Event Sourcing to solve our SLA/
Velocity problems caused by a (distributed) monolith

•  It addressed both architectural and org aspects
•  We did so in an iterative fashion focusing

– Reducing risk
– Delivering early

•  This is ongoing work



Summary 

•  Successfully used Event Sourcing to solve our SLA/
Velocity problems caused by a (distributed) monolith

•  It addressed both architectural and org aspects
•  We did so in an iterative fashion focusing

– Reducing risk
– Delivering early

•  This is ongoing work



Summary 

•  Successfully used Event Sourcing to solve our SLA/
Velocity problems caused by a (distributed) monolith

•  It addressed both architectural and org aspects
•  We did so in an iterative fashion focusing

– Reducing risk
– Delivering early

•  This is ongoing work



Summary 

•  Successfully used Event Sourcing to solve our SLA/
Velocity problems caused by a (distributed) monolith

•  It addressed both architectural and org aspects
•  We did so in an iterative fashion focusing

– Reducing risk
– Delivering early

•  This is ongoing work



Thank you! 

Any Questions?


