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What is Yammer? 

An Enterprise Social Network facilitating better and faster 
communication within an organization.
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That was mid-2013



Familiar Story 

No one even tries to draw this diagram now!
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Problems we’ve faced 

•  What to publish?
– Whole pieces of data (potentially unbounded size)
–  IDs, but requires:

•  Immutable versioned data
•  Uniform Resource Identifiers (REST done well)

•  There will be multiple publishers
–  Consumers need to deal with it gracefully



Problems we’ve faced 

•  What to publish?
– Whole pieces of data (potentially unbounded size)
–  IDs, but requires:

•  Immutable versioned data
•  Uniform Resource Identifiers (REST done well) 

•  There will be multiple publishers
–  Consumers need to deal with it gracefully



Adoption Challenges 

•  It is a big paradigm shift, it takes time for knowledge to 
propagate through an organization

•  We are not experts either, we are still learning
•  But good news, even if imperfect, it already had big 

impact on how we work



Adoption Challenges 

•  It is a big paradigm shift, it take time for knowledge to 
propagate through an organization

•  We are not experts either, we are still learning
•  But good news, even if imperfect, it already had big 

impact on how we work



Adoption Challenges 

•  It is a big paradigm shift, it take time for knowledge to 
propagate through an organization

•  We are not experts either, we are still learning
•  But good news, even if imperfect, it already had big 

impact on how we work



What we’ve discovered - Workflows 



What we’ve discovered - Workflows 



What we’ve discovered - Workflows 



Workflows 

•  Transformation logic outside of view service boundaries
•  Stream Processing / CQRS
•  We can express them, but too much plumbing
•  We need a higher level of abstraction



Workflows 

•  Transformation logic outside of view service boundaries
•  Stream Processing / CQRS
•  We can express them, but too much plumbing
•  We need a higher level of abstraction



Workflows 

•  Transformation logic outside of view service boundaries
•  Stream Processing / CQRS
•  We can express them, but too much plumbing
•  We need a higher level of abstraction



Workflows 

•  Transformation logic outside of view service boundaries
•  Stream Processing / CQRS
•  We can express them, but too much plumbing
•  We need a higher level of abstraction



What is the Future? 

•  Move to a fully managed solution
•  Provide Rx bindings
•  Remove centralization/http proxy components
•  Find a solution for Workflows
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Thank you! 

Any Questions?


