
FAST DATA
SMACK DOWN

Data Done Right
Created by / Stefan Siprell @stefansiprell

http://codecentric.de/
http://twitter.com/stefansiprell

SMACK?
Spark
Mesos
Akka
Cassandra
Kafka

Spark
Swiss Army Knife for Data

ETL Jobs? No problem.
µ-Batching on Streams? No problem.
SQL and Joins on non-RDBMS? No problem.
Graph Operations on non-Graphs? No problem.
Map/Reduce in super fast? Thanks.

Mesos
Distributed Kernel for the

Cloud
Links machines to a logical instance
Static deployment of Mesos
Dynamic deployment of the workload
Good integration with Hadoop, Kafka, Spark, and Akka
Lots and lots of machines - data-centers

Akka
Framework for reactive

applications
Highly performant
Simple concurrency via asynchronous processing
elastic and without single point of failure
resilient
Lots and lots of performance - 50 million messages per machine
and second

Cassandra
Performant and Always-Up No-

SQL Database
Linear scaling - approx. 10'000 requests per machine and second
No Downtime
Comfort of a column index with append-only performance
Data-Safety over multiple data-centers
Strong in denormalized models

Kafka
Messaging for Big Data

Fast - Delivers hundreds of MegaBytes per second to 1000s of
clients
Scales - Partitions data to manageable volumes
Data-Safety - Append Only allows buffering of TBs without a
performance impact
Distributed - from the ground up

In the beginning there was

HADOOP

Big-Batch saw
that this was

good
und has mapped and reduced ever since

But Business does not wait.

It always demands more...

ever faster

Way too fast
Realtime Processing is For

High Frequency Trading
Power Grid Monitoring
Data-Center Monitoring

is based on one-thread-per-core, cache-optimized, memory-barrier
ring-buffer, is lossy and work on a very limited context-footprint.

Between Batch and Realtime...

...lies a new Sweet Spot

SMACK
Updating News Pages
User Classification
(Business) Realtime Bidding for Advertising
Automative IoT
Industry 4.0

What do we
need?

Reliable Ingestion
Flexible Storage und Query Alternatives
Sophisticated Analysis Features
Management Out-Of-the-Box

What is SMACK -
Part II
Architecture Toolbox
Best-of-Breed Platform
Also a Product

µ-Batching
When do I need this?

I don't want to react on individual events.

I want to establish a context.

Abuse Classification
User Classification
Site Classification

How does it work?
Spark Streaming collects events und generates RDDs out of

windows.

Uses Kafka, Databases, Akka or streams as input
Windows can be flushed to persistent storage
Windows can be queried / modified per SQL In-Memory/Disk
Cascades of aggregations / classifications can be assembled /
flushed

What about λ-Architectures?
Spark Operations cab be run unaltered in either batch or stream

mode - it is always an RDD!

I need Realtime!
The Bot need to stop!
Which ad do we want to deliver?
Which up-sell offer shall I show??

Using Akka I can react to individual events. With Spark and
Cassandra I have two quick data-stores to establish a sufficient large

context.

3 Streams of
Happiness

Direct streams between Kafka and Spark.
Raw streams for TCP, UDP connections, Files, etc.
Reactive streams for back-pressure support.
Kafka can translate between raw und reactive streams.

Backpressure?
During Peak Times, the amount of incoming data may massively
exceed the capacity - just think of IoT. The back-pressure in the

processing pipelines needs to be actively managed, otherwise data is
lost.

to be continued

Flow
If a an event needs specific handling - a reaction - it needs to be dealt

with in Akka.

Why Kafka?

Append Only:Consumer may be offline for days.
Broker:Reduction of point-to-point connections.
Router:Routing of Streams including (de-)multiplexing.
Buffer:Compensate short overloads.
Replay:Broken Algorithm on incorrect data? Redeploy and Replay!

Exactly Once?
Whoever demands aexactly-once runtime, has no clue of

distributed systems.

Kafka supports at-least once. Make your business-logic idempotent.
How to deal with repetitive requests is a requirement.

Cloud? Bare
Metal?

Bare Metal is possible.

Cloud offers more redundancy and elasticity.

Mesos requires no virtualization oder containerization. Big Data
tools can run natively on the host OS.. The workload defines the

cluster setup.

Streams
... are an unbound and continuous sequence of events. Throughput

and end are not defined.

Conventional
Streams

Streams run over long periods of time and have a threatening
fluctuation in load.

Buffer can compensate peaks. Unbound Buffer load to fatal
problems, once the available memory is exhausted.

Bound Buffer can react in different ways to exhausted memory. FIFO
Drop? FILO Drop? Reduced Sampling?

Reactive Streams
If a consumer cannot cope with the load or bind the buffer, it falls

back from PUSH to PULL.

This fall-back may propagate its way against the pipeline to the
source.

The source is the last-line of defense and needs to deal with the
problem.

SMACK Reactive
Streams

Akka implements Reactive Streams.

Spark Streaming 1.5 implements Reactive Streams.

Spark Streaming 1.6 allows it's clients to use Reactive Stream as a
Protocol.

Kafka is a perfect candidate of a bound buffer for streams - the last
line of defense.

Mesos can scale up consumers on-the-fly during the fall-back.

Functional?
Streams love to be processed in parallel. Streams love Scala!

Events therefore need to be immutable - nobody likes production-
only concurrency issues.

Functions do not have side-effects - do not track state between
function calls!

Functions need to be 1st class citizens - maximize reuse of code.

Reuse?
 sparkContext.textFile("/path/to/input")
 .map { line =>
 val array = line.split(", ", 2)
 (array(0), array(1))
 }.flatMap {
 case (id,contents) => toWords(contents).map(w => ((w, id), 1))
 }.reduceByKey {
 (count1, count2) => count1 + count2
 }.map {
 case ((word, path), n) => (word, (path, n))
 }.groupByKey
 .map {
 case(word, list) => (word, sortByCount(list))
 }.saveAsTextFile("/path/to/output")

شكرا

Thank You

