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Stream processing 1n Real Life™

...before Kafka Streams
...somewhat exaggerated

...but perhaps not that much
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Abandonall hopé, ye who enter here.




How did this... (#machines = 1)

scala> val input = (1 to 6).toSeq

// Stateless computation
scala> val doubled = input.map(_ * 2)
Vector(2, 4, 6, 8, 10, 12)

// Stateful computation
scala> val sumOfOdds = input.filter(_% 2 != 0).reduceleft(_+ )
res2: Int = 9
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..turn into stuff like this (#machines > 1)
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Taken at a session at ApacheCon: Big Data, Hungary, September 2015




Kafka Streams
stream processing made simple
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Kafka Streams

* Powerful yet easy-to use Java library
* Part of open source Apache Kafka, introduced in v0.10, May 2016

* Source code: https://github.com/apache/kaftka/tree/trunk/streams

* Build your own stream processing applications that are
* highly scalable
* fault-tolerant
e distributed
« stateful
e able to handle late-arriving, out-of-order data
e <more on this later>
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Kafka Streams
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What 1s Kafka Streams: Unix analogy

Kafka Connect

$ cat < in.txt | grep “apache” | tr a-z A-Z > out.txt
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What 1s Kafka Streams: Java analogy
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When to use Kafka Streams (as of Katka 0.10)

Recommended use cases Questionable use cases

* Application Development e Data Science/ Data Engineering

* “Fast Data” apps (small or big data) e “Heavy lifting”

e Reactive and stateful applications e Data mining

e Linear streams * Non-linear, branching streams

* Event-driven systems (graphs)

e Continuous transformations ’ Machiqe learning, number
crunching

Continuous queries « What you’d do in a data warehouse

e Microservices
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Alright, can you show me some code now? ©

* APIoption 1: Kafka Streams DSL (declarative)

KStream<Integer, Integer> input = builder.stream(“numbers-topic”);

// Stateless computation
KStream<Integer, Integer> doubled = input.mapValues(v -> v * 2);

// Stateful computation

KTable<Integer, Integer> sumOfOdds = input
filter((k,v) ->v % 2 1= 0)
.selectKey((k, v) -> 1)

.reduceByKey((vl, v2) -> vl + v2, ”sum-of-odds");
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Alright, can you show me some code now? ©

* APIoption 2: low-level Processor API (imperative)

public PrintToConsoleProcessor implements Processor<K, V> {

@Override
public void init(ProcessorContext context) {
// No initialization needed in this case.

}

@override Process arecord

public void process(K key, V value) {
System.out.println("Received data record with " +
"key=" + key + ", value=" + value);

Shutdown

}
goverride Periodic action
public void punctuate(long timestamp) {
// No periodic actions needed in this case.
}
@overr‘ide _

public void close() {
// No shutdown logic needed in this case.

}
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How do I install Kafka Streams?

e There 1s and there should be no “install”.

* It’s alibrary. Add it to your app like any other library.

<dependency>
<groupId>org.apache.kafka</groupId>
<artifactId>kafka-streams</artifactId>

<version>0.10.0.0</version>
</dependency>
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ONE DOES NOT SIMPLY PROCESS DATA'
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Do I need to installa CLUSTER to run my apps?

* No, youdon’t. Kafka Streams allows you to stay lean and lightweight.

e Unlearn bad habits: “do cool stuff with data != must have cluster”
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How do I package and deploy my apps? How do I ...?
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How do I package and deploy my apps? How do I ...?

*  Whatever works for you. Stick to what you/your company think is the best way.
*  Why? Because an app that uses Kafka Streams is...a normal Java app.

*  Your Ops/SRE/InfoSec teams may finally start to leve not hate you.
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Kafka
concepts
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Kafka concepts
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Kafka concepts
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Kaftka Streams
concepts
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Stream
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Processor topology
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Stream partitions and stream tasks
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Streams meet Tables
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http://www.confluent.10/blog/introducing-kafka-streams-stream-processing-made-simple
http://docs.confluent.10/3.0.0/streams/concepts. html#duality-of-streams-and-tables
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Streams meet Tables — in the Kafka Streams DSL

time time

= interprets data as record stream

“Alice clicked 2 titAdsce Flicked 2+3 = 5 times.”

bob 10 alice 3

\ 4

alice 2

KTable “Alice clicked 2 times*Afice clicked 2 3 times.”

= interprets data as changelog stream
~ 1s a continuously updated materialized view
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Streams meet Tables — in the Kafka Streams DSL

time time

“Alice bought égdscg Hought eggs and milk.”

Show me
alice eggs » bob | lettuce alice milk ALL values for
User purchase records a key

KTable “Alice is currently %lRaris.Cufrently in Pasis Berlin.”

Show me the
alice paris » bob zurich alice | berlin LATEST value
User profile/location information for a key
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Streams meet Tables — in the Kafka Streams DSL
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Streams meet Tables — in the Kafka Streams DSL

JOIN example: compute user clicks by region via KStream.leftJoin(KTable)

// e.g. "alice" -> 13L

KStream<String, Long> userClicksStream = ...

// e.g. "alice" -> "europe"

KTable<String, String> userRegionsTable = .

“ey
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Streams meet Tables — in the Kafka Streams DSL

* JOIN example: compute user clicks by region via KStream.leftJoin(KTable)

// e.g. "alice" -> 13L
KStream<String, Long> userClicksStream = ...

// e.g. "alice" -> "europe"

KTable<String, String> userRegionsTable = ...;

// Compute the number of user clicks per region, e.g. "europe" -> 13L
KTable<String, Long> clicksPerRegion = userClicksStream

.leftJoin(userRegionsTable, (clicks, region) -> new RegionWithClicks(region == null ? "UNKNOWN" : region, clicks))
.map((user, regionWithClicks) -> new KeyValue<>(regionWithClicks.region(), regionWithClicks.clicks()))
.reduceByKey (

(firstClicks, secondClicks) -> firstClicks + secondClicks,
stringSerde, longSerde, "ClicksPerRegion");

Even simpler in Scala because, unlike Java, it natively supports tuples:

.leftJoin(userRegionsTable, (clicks: Long, region: String) => (if (region == null) "UNKNOWN" else region, clicks))
.map((user: String, regionWithClicks: (String, Long)) => new KeyValue(regionWithClicks._1, regionWithClicks._2))
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Streams meet Tables — in the Kafka Streams DSL

* JOIN example: compute user clicks by region via KStream.leftJoin(KTable)

\ 4

Input alice 13

NN

leftJoin() alice (europe, 13) | — Dbob (europe, 5)
w/ KTable

bob 5

map()

reduceByKey( + )

= | I
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Streams meet Tables — in the Kafka Streams DSL
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Streams meet Tables — in the Kafka Streams DSL
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Katka Streams
key features
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Key features in 0.10

* Native, 100%-compatible Kafka integration
e Also inherits Kafka’s security model, e.g. to encrypt data-in-transit
e Uses Kafka as its internal messaging layer, too
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Native Kafka integration

* Reading data from Kafka

— KsweaMBuders (topic) —
)
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*  Writing data to Katka
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Native Kafka integration

* You can configure both Kafka Streams plus the underlying Kafka clients
STeeams(onFiG

pL{cod:Jon !0\ KAFKA gT@EAMS
Kofka. Locaton 1| SErmiNes |
CAFKA CLENT | 77— £
SETTIN 6S sy

Properties cfg = new Properties();

cfg.putl(StreamsConfig.APPLICATION_ID CONFIG, "berlin-buzzwords-demo-app");
cfg.putj(StreamsConfig.BOPTSTRAP_SERVERS_CONFIG, "kafka-brokerl:9092,kafka-broker2:9092");
cfg.putl(ConsumerConfig .AYTO OFFSET_RESET_CONFIG, "earliest");

// ...and so on...

StreamsConfig streamsConfig = new StreamsConfig(cfg);
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Key features in 0.10

Native, 100%-compatible Kafka integration
* Also inherits Kafka’s security model, e.g. to encrypt data-in-transit
* Uses Kafka as its internal messaging layer, too

Highly scalable
Fault-tolerant
Elastic
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Execution model
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Execution model
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Key features in 0.10

Native, 100%-compatible Kafka integration
* Also inherits Kafka’s security model, e.g. to encrypt data-in-transit
* Uses Kafka as its internal messaging layer, too

* Highly scalable
e Fault-tolerant
e Elastic

* Stateful and stateless computations (e.g. joins, aggregations)
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Stateful computations

Stateful computations like aggregations or joins require state
¢  We already showed a join example in the previous slides.
¢ Windowing a stream is stateful, too, but let’s ignore this for now.

* State stores in Kafka Streams
e Typically: key-value stores
* Pluggable implementation: RocksDB (default), in-memory, your own ...

» State stores are per stream task for isolation (think: share-nothing)
 State stores are local for best performance

 State stores are replicated to Kafka for elasticity and for fault-tolerance
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Execution model
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Execution model
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Execution model
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Stateful computations

» Kafka Streams DSL: abstracts state stores away from you

» Stateful operations include
* count(), reduceByKey(), aggregate(), ...

 Low-level Processor API: direct access to state stores

* Very flexible but more manual work for you
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Stateful computations

* Use the low-level Processor API to interact directly with state stores

public class WordCountProcessor extends Processor<byte[], String> {
private KeyValueStore<String, Long> stateStore;
@Override

public void init(ProcessorContext context) {
Istatestore = (KeyvalueStore) context.getStateStore("WordCounts");

Get the store

}

@Override
public void process(byte[] key, String word) {

|Integer oldvalue = stateStore.get(word); _

¥ (oldValue == null) { Use the store

stateStore.put(word, 1L);
} else {
stateStore.put(word, oldvValue + 1L);

// rest omitted
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Key features in 0.10

Native, 100%-compatible Kafka integration
* Also inherits Kafka’s security model, e.g. to encrypt data-in-transit
* Uses Kafka as its internal messaging layer, too

* Highly scalable

e Fault-tolerant

* Elastic

» Stateful and stateless computations

e Time model
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Time

You configure the desired time semantics through timestamp extractors

* Default extractor yields event-time semantics
* Extracts embedded timestamps of Kafka messages (introduced in v0.10)

// Event-time (default timestamp extractor in 0.10)

public class ConsumerRecordTimestampExtractor implements TimestampExtractor {
@Override
public long extract(ConsumerRecord<Object, Object> record) {

return record.timestamp();

// Processing-time

public class WallclockTimestampExtractor implements TimestampExtractor {
@Override

public long extract(ConsumerRecord<Object, Object> record) {

return System.currentTimeMillis();
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Key features in 0.10

Native, 100%-compatible Kafka integration
* Also inherits Kafka’s security model, e.g. to encrypt data-in-transit
* Uses Kafka as its internal messaging layer, too

* Highly scalable

e Fault-tolerant

* Elastic

» Stateful and stateless computations
e Time model

* Windowing
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Windowing

TimeWindows.of (3000)
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Introducing Kafka Streams, Michael G. Noll, Berlin Buzzwords, June 2016




Windowing use case: monitoring (1m/5m/15m averages)
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Key features in 0.10

Native, 100%-compatible Kafka integration
* Also inherits Kafka’s security model, e.g. to encrypt data-in-transit
* Uses Kafka as its internal messaging layer, too

* Highly scalable

e Fault-tolerant

e Elastic

» Stateful and stateless computations

e Time model

*  Windowing

* Supports late-arriving and out-of-order data

* Millisecond processing latency, no micro-batching

* At-least-once processing guarantees (exactly-once is in the works)
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Wrapping up
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Where to go from here?

Katka Streams is available in Apache Kafka 0.10 and Confluent Platform 3.0
* http://kafka.apache.org/
* http://www.confluent.io/download (free + enterprise versions, tar/zip/deb/rpm)

Kafka Streams demos at https://github.com/confluentinc/examples
* Java 7, Java 8+ with lambdas, and Scala

*  WordCount, Joins, Avro integration, Top-N computation, Windowing, ...

Apache Kafka documentation: http://kafka.apache.org/documentation.html

Confluent documentation: http://docs.confluent.io/3.0.0/streams/
*  Quickstart, Concepts, Architecture, Developer Guide, FAQ

Join our bi-weekly Ask Me Anything sessions on Katka Streams
* Contact me at michael@confluent.io for details
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Some of the things to come

* Exactly-once semantics
* Queriable state — tap into the state of your applications
* SQL interface

* Listen to and collaborate with the developer community
*  Your feedback counts a lot! Share it via users@kafka.apache.org

Tomorrow’s keynote (09:30 AM) by Neha Narkhede,
co-founder and CTO of Confluent

“Application development and data in the emerging world
of stream processing”

Introducing Kafka Streams, Michael G. Noll, Berlin Buzzwords, June 2016




Want to contribute to Kafka and open source?

Join the Katka community
http://katka.apache.org/

...1n a great team with the creators of Kafka?

Confluent is hiring ©

http://confluent.io/

Questions, comments? Tweet with #bbuzz and /cc to (@Confluentlnc
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