
1/30



2/30

About me

I Software engineer at Grid Dynamics

I I am interested in low-level system programming



3/30

Table of Contents

Compression in Lucene

Scalar vs. Vectors

Java Critical Native

Benchmarks



4/30

Compression in Lucene



5/30

Requirements of a search index

I compress index as possible
I minimize I/O
I minimize index size
I FS/Memory/CPU cache friendly

I avoid disc seeks
I disc seek is ≈ 10ms



6/30

The numbers every engineer should know

I L1 cache reference 0.5 ns

I Branch mispredict 5 ns

I L2 cache reference 7 ns

I Main memory reference 100 ns

I Read 1 MB sequentially from memory 250,000 ns

I Disk seek 10,000,000 ns

I Read 1 MB sequentially from disk 30,000,000 ns



7/30

Codec API



8/30

4D Codec API



9/30

Postings lists

I Encoded using modified FOR delta

1. uses delta
2. splits into block of N=128 values
3. bit packing per block
4. remaining docs, encode with vint

Example with N=4 1,3,4,6,8,20,22,26,30,158
1,2,1,2,2,12,2,4,4,128
[1,2,1,2] [2,12,2,4] 4,128



10/30

What is FOR encoding?

To encode the following 4 numbers 1, 2, 1, 2:

10 0 1 1 0 0 1 1 0

1 bytenumber of bits
per value

FOR requires 1 byte instead of 4 ∗ 4 = 16 bytes!



11/30

What is FOR encoding?

I pros
I great compression rate
I fast decoding speed
I can be vectorized

I cons
I no random access within the block
I the cost is determined by the largest delta in a block



12/30

Scalar vs. Vectors



13/30

Scalar vs. Vectors

float a[4], b[4], c[4];

...

for (int i = 0; i < 4; i++) {

c[i] = a[i] + b[i];

}

I JIT ≈ 32 machine instructions

I gcc ≈ 24 machine scalar instructions

I gcc – 4 machine instructions with SSE2



14/30

Scalar vs. Vectors

A0 + B0 = C0

A1 + B1 = C1

A2 + B2 = C2

A3 + B3 = C3

A0

A1

A2

A3

B0

B1

B2

B3

C0

C1

C2

C3

+ =



15/30

Scalar vs. Vectors

I 75% fewer loads

I 75% fewer adds

I 75% fewer stores



16/30

Vectorization in HotSpot

I auto-vectorization – vector arithmetic is not supported yet.
Only array initialization and array copy.

I http://bugs.java.com/view_bug.do?bug_id=6340864
I http://bugs.java.com/view_bug.do?bug_id=7192383

I explicit vectorization – JVM does not provide interfaces

http://bugs.java.com/view_bug.do?bug_id=6340864
http://bugs.java.com/view_bug.do?bug_id=7192383


17/30

Workaround

I write kernel code in C/C++

I call via JNI

The cost of the JNI call can be significant.



17/30

Workaround

I write kernel code in C/C++

I call via JNI

The cost of the JNI call can be significant.



18/30

What makes JNI calls slow?

I Wrap object references to JNI handles.

I Obtain JNIEnv*, jclass/jobject and pass them as parameters.

I Lock an object monitor if the method is synchronized.

I Call the native function.

I Check if safepoint is needed.

I Unlock monitor if locked.

I Unwrap object result and reset JNI handles block.

I Handle JNI exceptions.



19/30

Java Critical Native



20/30

JDK-7013347 Critical Native

Critical native looks like JNI method:

I static and not synchronized

I not throw exceptions

I does not use wrappers

I works with primitives

See details in JDK-7013347



21/30

Benchmarks



22/30

Native FOR

A simple C library for compressing lists of integers
https://github.com/lemire/simdcomp (thanks to Daniel
Lemire, Leonid Boytsov)

I supports SSE2, SSE4.1, AVX

I uses C99 syntax

I uses SIMD intrinsics

https://github.com/lemire/simdcomp


23/30

Microbenchmark

I java code
I java vint – classic vint implementation
I java FOR – classic FOR implementation

I JNI + native FOR implementation
I normal JNI – usual JNI call
I critical JNI – critical native call

Environment

I i5-4300M CPU @ 2.60GHz (Haswell)
I fedora 21 (kernel 3.17.4)
I JRE 1.8.0 40
I gcc 4.9.2

Decodes blocks with fixed size
Every block contains random elements with fixed density



24/30

Microbenchmark

128 256 512 1024 2048 4096 8192 16384

60

120

240

480

960

1920

3840

7680

15360

30720

Block size

D
ec

o
d

in
g

la
te

n
cy

,
n

s/
op

critical JNI
normal JNI
java FOR
java vbyte



25/30

SIMD codec

I based on Lucene50 codec

I uses https://github.com/lemire/simdcomp as native
FOR implementation

I still in progress so it does not support
I freqs
I positions
I offsets
I payloads

Source code available at http://git.io/vkY1o

https://github.com/lemire/simdcomp
http://git.io/vkY1o


26/30

Lucene benchmark

I indexes all of Wikipedia’s English XML export
I only documents are indexed: term frequencies and positions

are omitted
I one large segment is used(about 1GB)

I measures how long it takes to search top 10K frequent terms
I environment

I i5-4300M CPU @ 2.60GHz (Haswell)
I fedora 21 (kernel 3.17.4)
I JRE 1.8.0 40
I gcc 4.9.2

I ant run-task -Dtask.alg=conf/searchOnlyWiki.alg
-Dtask.mem=8G



27/30

Benchmark results

49sSIMDCodec

60sLucene50

30s 35s 40s 45s 50s 55s 60s 65s



28/30

Future work

I Fast compression and intersection of lists of sorted integers
https://github.com/lemire/

SIMDCompressionAndIntersection

I Fast decoder for VByte-compressed integers
https://github.com/lemire/MaskedVByte

I Native roaring codec

I Native facet component

I Native docvalues decoder

https://github.com/lemire/SIMDCompressionAndIntersection
https://github.com/lemire/SIMDCompressionAndIntersection
https://github.com/lemire/MaskedVByte


29/30

Thank you!


	Compression in Lucene
	Scalar vs. Vectors
	Java Critical Native
	Benchmarks

