
javier ramirez
@supercoco9

How you can benefit from using

I was
Lois Lane

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

redis
has
super
powers

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

https://teowaki.com/

myth: the bottleneck

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

redis-benchmark -r 1000000 -n 2000000 -t get,set,lpush,lpop,mset -P 16 -q

On my laptop:

SET: 513610 requests per second
GET: 641436 requests per second
LPUSH: 845665 requests per second
LPOP: 783392 requests per second
MSET (10 keys): 89988 requests per second

On a small digital ocean server ($5/month)

SET: 227816 requests per second
GET: 228258 requests per second
LPUSH: 251098 requests per second
LPOP: 251572 requests per second
MSET (10 keys): 43918 requests per second

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

https://teowaki.com/

http://redis.io

open source, BSD licensed, advanced
key-value store.

It is often referred to as a
data structure server since keys can contain
strings, hashes, lists, sets, sorted sets and
hyperloglogs.

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

started in 2009 by Salvatore Sanfilippo @antirez

112 contributors at

https://github.com/antirez/redis

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

Redis makes
you think

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

http://redis.io/
https://teowaki.com/

Redis data types
Strings

Hashes

Lists

Sets

Sorted Sets

HyperLogLogs
javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

https://teowaki.com/

basic commands

Setting/getting/deleting/expiring

Increment/decrement

Pushing/popping

Checking membership, size...

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

much cooler commands
Setting only if exists

Blocking pop

(Blocking) pop from one list, push to another

Get/set string ranges (and bit operations)

Set intersections/diffs (and store)

Pub/sub
javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

https://teowaki.com/

A chat in 6 lines of code

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

r=Redis.new driver: :hiredis
r.subscribe “chatrooms:42” do |on|

on.message do |topic, msg|
puts “#{topic}: #{msg}”

end
end

r.publish “chatrooms:42”, “Hello berlin buzzwords”

https://teowaki.com/

atomicity

single threaded, so no
concurrency problems

transactions and lua
scripts to run multiple
operations atomically

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

https://teowaki.com/

Redis keeps
everything
in memory
all the time

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

https://teowaki.com/

Does that mean if
the server goes
down I will lose
my data?

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

NO*
*unless you didn't configure it properly

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

High Availability & scaling out

one master, several
read-only slaves

sharding

Twemproxy & redis cluster
javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

https://teowaki.com/

what's being used for

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

twitter

Every time line (800 tweets
per user) is on redis

5000 writes per second avg
300K reads per second

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

https://teowaki.com/

twitter

user info from
gizmoduck
(memcached)

user id tweet id metadata

write API (from browser or client app)

rpushx to Redis

tweet info from
tweetypie
(memcached + mysql)

your twitter
timeline

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

fanout (flockDB)
one per follower

https://teowaki.com/

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

soundcloud

Roshi implements a time-series event storage
via a LWW-element-set CRDT with inline
garbage collection.

Roshi is a stateless, distributed layer on top of
Redis and is implemented in Go. It is partition
tolerant, highly available and eventually
consistent.

https://github.com/soundcloud/roshi

World Of Warcraft

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

Blizzard is quite secretive about it

Known to have at least 8 servers with 64Gb each to
serve user avatars

Known to have seen 1.000.000 users concurrently in
the Asian version of the game

https://teowaki.com/

stack overflow
Three level cache:

local cache (no persistence)
sessions, and pending view count updates

site cache
 hot question id lists, user acceptance rates...

global cache (separate Redis DB)
Inboxes, API usage quotas...

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

pinterest object graph

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

per user
Redis SortedSet, with timestamp as the score to

store the users followed explicitly
store the users followed implicitly
store the user’s explicit followers
store the user’s implicit followers
store boards followed explicitly

Redis set to store boards unfollowed explicitly

per board
Redis Hash to store a board’s explicit followers
Redis Set to store a board’s explicit unfollowers

https://teowaki.com/

youporn

Most data is found in hashes with ordered sets used to
know what data to show.

zInterStore on: videos:filters:released,
Videos:filters:orientation:straight,Videos:filters:categorie
s:{category_id}, Videos:ordering:rating

Then perform a zRange to get the pages we want and
get the list of video_ids back.

Then start a pipeline and get all the videos from hashes.

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

snapchat
Redis cluster of 216 master and 216 slaves.
Over 400MM messages per day.
Running on Google App Engine.
No need to have an operations team.

github
Git as a service internally.

Redis is used for storing routing info
matching user repositories to server names

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

hipchat
Redis for caching.

Information like which users are in which
rooms, presence information, who is online...

Redis to balance XMPP, so it doesn’t matter
which XMPP server you connect to.

when things go wrong

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

the instagram case

moving from redis to
cassandra: 75% savings on
servers

lesson learnt:
know when redis is not appropriate

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

pick the right superhero

the twilio case

credit card hell

lesson learnt:
know what you are doing.
Don't change config on the fly

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

take the time to master
your super powers

everybody fails, sometimes

Salvatore Sanfilippo
lost his own blog*
because he forgot
to configure persistance

* he recovered it in 30 minutes

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

you can go
a long way
before having
scary numbers

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

how teowaki is using redis

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

Abusing queues

keep track of every activity in the system, even if you
don't need them all right now:
- every page view
- every API request
- every time a record is created/updated/deleted

benefits:
- highly decoupled system
- easier to divide into services
- you can add behaviour without changing your app

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

intermediate cache
* As a very fast lightweight storage for analytics data before
sending them to our google bigquery based solution

* As a cache for attributes frequently looked up in join tables
(names, nicknames, guids, delegated or included
model names...)

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

Some of our uses of Lua
Expiring attributes inside a Redis hash

Inserting notifications into a list only if there are not
pending notifications from the same user for the
same scope

Paginating a list by an attribute

Manipulating JSON directly at the Redis layer

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

counters

Atomic counters can be safely invoked concurrently
from anywhere, so you can implement “like”
features, global sequences or usage monitoring
systems in highly concurrent applications for free.

You can share your counters with any other internal
application and still be sure they won't collide.

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

Temporary data
Redis allows us to self expire keys after a time has
passed. You can use this mechanism for a simple
cache

If you operate on a key with expiration time, you
can change its value and still keep the expiration
going. By combining a decrementing counter with
an expiration time, implementing usage quotas is
trivial

Also, you can inspect which keys you have in your
server efficiently using SCAN commands

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

nginx + lua + redis

Multiple levels of cache by using Redis on the webserver/
middleware layer

http://wiki.nginx.org/HttpRedis

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

summarizing
* Redis is more powerful than it seems

* Very fast, easy to use, simple, good documentation

* In-memory data structures, distributed, shared and persisted

* Good as data store, intermediate data store, cache or queue

* Lots of use cases, both in huge and smaller systems

You should probably use it a lot more

javier ramirez @supercoco9 https://teowaki.com berlin buzzwords 2014

Find related links at

https://teowaki.com/teams/javier-community/link-categories/redis

Danke.
If you enjoyed this talk, please sign up for

https://teowaki.com

Don't forget to invite your friends too!

Javier Ramírez
@supercoco9

berlin buzzwords 2014

