
Data Modeling in the New World
with Apache CassandraTM

Jonathan Ellis
CTO, DataStax
Project chair, Apache Cassandra

Download & install

©2014 DataStax. Do not distribute without consent. 2

Cassandra
•  http://planetcassandra.org/cassandra/

CQL Basics

©2014 DataStax. Do not distribute without consent. 3

CQL Basics

©2014 DataStax. Do not distribute without consent. 4

Cassandra Query Language

Keyspace – analogous to a schema.
•  Has various storage attributes.
•  The keyspace determines the RF (replication factor).

Table – looks like a SQL Table.
•  A table must have a Primary Key.
•  We can fully qualify a table as <keyspace>.<table>

DevCenter

©2014 DataStax. Do not distribute without consent. 5

•  DataStax DevCenter – a free, visual query tool for creating and running CQL
statements against Cassandra and DataStax Enterprise.

CQLSH

©2014 DataStax. Do not distribute without consent. 6

•  Command line interface comes with Cassandra

•  Launching on Linux
$ cqlsh [options] [host [port]]  
"

•  Launching on Windows
python cqlsh [options] [host [port]]"

•  Example
$ cqlsh"

$ cqlsh -u student -p cassandra 127.0.0.1 9160"

"

CQLSH

©2014 DataStax. Do not distribute without consent. 7

Non-CQL commands in cqlsh

©2014 DataStax. Do not distribute without consent. 8

Command	
 Description	

CAPTURE	
 Captures command output and appends it to a file	

CONSISTENCY	
 Shows the current consistency level, or given a level, sets it	

COPY	
 Imports and exports CSV (comma-separated values) data	

DESCRIBE	
 Provides information about a Cassandra cluster or data objects	

EXIT	
 Terminates cqlsh	

SHOW	
 Shows the Cassandra version, host, or data type assumptions	

SOURCE	
 Executes a file containing CQL statements	

TRACING	
 Enables or disables request tracing	

What is keyspace or schema?

©2014 DataStax. Do not distribute without consent. 9

Keyspace or schema is a top-level namespace
•  All data objects (e.g., tables) must belong to some

keyspace
•  Defines how data is replicated on nodes
•  Keyspace per application is a good idea

Replica placement strategy
•  SimpleStrategy (prototyping)
•  NetworkTopologyStrategy (production)

Creating a keyspace
Single Data Centre Consistency

©2014 DataStax. Do not distribute without consent. 10

Creating a keyspace
Multiple Data Centre Consistency

©2014 DataStax. Do not distribute without consent. 11

Use and Drop a keyspace

©2014 DataStax. Do not distribute without consent. 12

To work with data objects (e.g., tables) in a keyspace:

USE pchstats;"

To delete a keyspace and all internal data objects

DROP KEYSPACE pchstats;"

CQL Basics – creating a table

©2014 DataStax. Do not distribute without consent. 13

 CREATE TABLE cities ("

 city_name varchar,"

 elevation int,"

 population int,"

 latitude float,"

 longitude float,"

 PRIMARY KEY (city_name)!

);"

In this example, the partition key = primary key

Compound Primary Key

©2014 DataStax. Do not distribute without consent. 14

The Primary Key
•  The key uniquely identifies a row.
•  A compound primary key consists of:

•  A partition key
•  One or more clustering columns

e.g. PRIMARY KEY (partition key, cluster columns, ...)"

•  The partition key determines on which node the

partition resides
•  Data is ordered in cluster column order within the

partition

Compound Primary Key

©2014 DataStax. Do not distribute without consent. 15

CREATE TABLE sporty_league ("

 team_name varchar,"

 player_name varchar,"

 jersey int,"

 PRIMARY KEY (team_name, player_name)!

);"

©2014 DataStax. Do not distribute without consent. 16

team_name player_name jersey

Springers Adler 86

Springers Belanger 13

Springers Foote 99

Mighty Mutts Buddy 32

Mighty Mutts Lucky 7

Peppers Aaron 17

Peppers Baker 62

Peppers Cabrera 25

partitions
are not
ordered

Rows within partition clustered
by player_name

Simple Select

©2014 DataStax. Do not distribute without consent. 17

SELECT * FROM sporty_league;"
"
"
"
"
"

•  More that a few rows can be slow.
•  Use LIMIT keyword to choose fewer or more rows

"

Simple Select on
Partition Key and Cluster Colum

©2014 DataStax. Do not distribute without consent. 18

"

SELECT * FROM sporty_league "

WHERE team_name = ‘Mighty Mutts’;"

"

"

"

"

"

"

SELECT * FROM sporty_league "

WHERE team_name = ‘Mighty Mutts’  
and player_name = ‘Lucky’;"

ORDER BY

©2014 DataStax. Do not distribute without consent. 19

•  Only allowed for single-partition queries
•  Only allowed against clustering columns
•  Data will returned by default in the order of the

clustering column
•  ASC or DESC can override the default

SELECT * FROM sporty_league  
WHERE team_name = ‘Mighty Mutts’  
ORDER BY player_name DESC;"

CLUSTERING ORDER BY clause

©2014 DataStax. Do not distribute without consent. 20

Defines on-disk ordering of rows in a partition
"

CREATE TABLE albums_by_genre ("

 genre VARCHAR,"

 performer VARCHAR,"

 year INT,"

 title VARCHAR,"

 PRIMARY KEY (genre, performer, year, title)"

) WITH CLUSTERING ORDER BY !

 (performer ASC, year DESC, title ASC);!

Predicates

©2014 DataStax. Do not distribute without consent. 21

•  On the partition key: = and IN
•  On the cluster columns: <, <=, =, >=, >, IN

Insert/Update

©2014 DataStax. Do not distribute without consent. 22

INSERT INTO sporty_league (team_name, player_name, jersey)
VALUES ('Mighty Mutts',’Felix’,90);  
 
UPDATE sporty_league SET jersey = 77"

WHERE team_name = 'Mighty Mutts’ AND player_name = ‘Felix’;"

"

Primary key columns uniquely identify the row and are mandatory
•  No multi-row update predicates

Writes isolated from reads
•  No updated columns are visible until entire row is finished

•  (technically, entire partition)

What is an upsert?

©2014 DataStax. Do not distribute without consent. 23

UPdate + inSERT
•  Both UPDATE and INSERT are write operations
•  No reading before writing

Term “upsert” denotes the following behavior
•  INSERT updates or overwrites an existing row

•  When inserting a row in a table that already has another row
with the same values in primary key columns

•  UPDATE inserts a new row
•  When a to-be-updated row, identified by values in primary key

columns, does not exist

•  Upserts are legal and do not result in error or warning
messages

How to avoid UPSERTS

©2014 DataStax. Do not distribute without consent. 24

Guarantee that your primary keys are unique from one
another
•  Use an appropriate natural key based on your data
•  Use a surrogate key for partition key

Use lightweight transactions
•  INSERT … IF NOT EXISTS

Surrogate keys in Cassandra

©2014 DataStax. Do not distribute without consent. 25

RDBMS typically use sequences
•  MS SQL IDENTITY, MYSQL AUTO_INCREMENT

•  INSERT INTO user (id, firstName, LastName)  
VALUES (seq.nextVal(), ‘Ted’, ‘Codd’)"

Cassandra has no sequences!
•  Requires a lock (performance killer)

•  Requires coordination (availability killer)

What to do?
•  Use part of the data to create a unique key

•  Use a UUID

UUID

©2014 DataStax. Do not distribute without consent. 26

•  Universal Unique ID
•  128 bits

•  99051fe9-6a9c-46c2-b949-38ef78858dd0

•  Easily generated on the client
•  Version 1 has a timestamp component (TIMEUUID)
•  Version 4 has no timestamp component

•  Faster to generate

TIMEUUID

©2014 DataStax. Do not distribute without consent. 27

TIMEUUID data type supports Version 1 UUIDs
•  Generated using time (60 bits), a clock sequence

number (14 bits), and MAC* address (48 bits)
•  CQL function ‘now()’ generates a new TIMEUUID

•  1be43390-9fe4-11e3-8d05-425861b86ab6
•  Time can be extracted from TIMEUUID

•  CQL function dateOf() extracts the timestamp as a
date

•  TIMEUUID values in clustering columns or in column
names are ordered based on time

•  DESC order on TIMEUUID lists most recent data first

UUID Example

©2014 DataStax. Do not distribute without consent. 28

Example
•  Users are identified by UUID
•  User activities (i.e., rating a track) are identified by TIMEUUID

•  A user may rate the same track multiple times
•  Activities are ordered by the time component of TIMEUUID

CREATE TABLE track_ratings_by_user ("
 user UUID,!
 activity TIMEUUID,!
 rating INT,"
 album_title VARCHAR,"
 album_year INT,"
 track_title VARCHAR,"
 PRIMARY KEY (user, activity)"
) WITH CLUSTERING ORDER BY (activity DESC);"

Exercise 1

Creating a keyspace and table

©2014 DataStax. Do not distribute without consent. 29

©2014 DataStax. Do not distribute without consent. 30

•  Install Cassandra
•  CREATE KEYSPACE demo
•  CREATE TABLE users

•  id
•  email
•  Password

•  CREATE TABLE tweets
•  author
•  created_at
•  body
•  id?

cqlsh tab completion is your friend!

Exercise 1

Exercise 1

©2014 DataStax. Do not distribute without consent. 31

Who used a uuid for the primary key?

Benefits? Drawbacks?

Performance considerations

©2014 DataStax. Do not distribute without consent. 32

•  The best queries are in a single partition.
i.e. WHERE partition key = <something>

•  Each new partition requires a new disk seek.
•  Queries that span multiple partitions are s-l-o-w
•  Queries that span multiple clustered rows are fast

ALTER TABLE

©2014 DataStax. Do not distribute without consent. 33

•  ALTER TABLE x ADD y <type>;
•  ALTER TABLE x DROP y;

Authentication and Authorisation

©2014 DataStax. Do not distribute without consent. 34

•  CQL supports creating users and granting them
access to tables etc..

•  You need to enable authentication in the
cassandra.yaml config file.

•  You can create, alter, drop and list users
•  You can then GRANT permissions to users

accordingly – ALTER, AUTHORIZE, DROP, MODIFY,
SELECT.

Query Tracing

©2014 DataStax. Do not distribute without consent. 35

•  You can turn on tracing on or off for queries with the
TRACING ON | OFF command.

•  This can help you understand what Cassandra is
doing and identify any performance problems.

•  http://www.datastax.com/dev/blog/tracing-in-
cassandra-1-2

What CQL data types are available?

©2014 DataStax. Do not distribute without consent. 36

CQL Type	
 Constants	
 Description	

ASCII	
 strings	
 US-ASCII character string	

BIGINT	
 integers	
 64-bit signed long	

BLOB	
 blobs	
 Arbitrary bytes (no validation), expressed as hexadecimal	

BOOLEAN	
 booleans	
 true or false	

COUNTER	
 integers	
 Distributed counter value (64-bit long)	

DECIMAL	
 integers, floats	
 Variable-precision decimal	

DOUBLE	
 integers	
 64-bit IEEE-754 floating point	

FLOAT	
 integers, floats	
 32-bit IEEE-754 floating point	

INET	
 strings	
 IP address string in IPv4 or IPv6 format*	

INT	
 integers	
 32-bit signed integer	

LIST	
 n/a	
 A collection of one or more ordered elements	

MAP	
 n/a	
 A JSON-style array of literals: { literal : literal, literal : literal ... }	

SET	
 n/a	
 A collection of one or more elements	

TEXT	
 strings	
 UTF-8 encoded string	

TIMESTAMP	
 integers, strings	
 Date plus time, encoded as 8 bytes since epoch	

UUID	
 uuids	
 A UUID in standard UUID format	

TIMEUUID	
 uuids	
 Type 1 UUID only (CQL 3)	

VARCHAR	
 strings	
 UTF-8 encoded string	

VARINT	
 integers	
 Arbitrary-precision integer	

Collection Data Type

©2014 DataStax. Do not distribute without consent. 37

CQL supports having columns that contain collections of data.
The collection types include:
•  Set, List and Map.

These data types are intended to support the type of 1-to-many relationships that can
be modeled in a relational DB e.g. a user has many email addresses.

Some performance considerations around collections.
•  Requires serialization so don’t go crazy!
•  Often more efficient to denormalise further rather than use collections if intending to

store lots of data.
•  Favour sets over list – lists not as performant

Watch out for collection indexing in Cassandra 2.1!

CREATE TABLE collections_example ("
"id int PRIMARY KEY,"
"set_example set<text>,"
"list_example list<text>,"
"map_example map<int, text>"

);

Collection considerations

©2014 DataStax. Do not distribute without consent. 38

•  Designed to store a small amount of data
•  A collection is retrieved in its entirety
•  Maximum number of elements in a collection is 64

thousands
•  In practice – hundreds

•  Maximum size of element values is 64 KB
•  Collection columns cannot be part of a primary key

•  No collections in a partition key
•  No collections in clustering columns

•  Cannot nest a collection inside of another collection

Counters

©2014 DataStax. Do not distribute without consent. 39

•  Stores a number that incrementally counts the occurrences of
a particular event or process.

•  Note: If a table has a counter column, all non-counter
columns must be part of a primary key

CREATE TABLE UserActions ("

 user VARCHAR,"

 action VARCHAR,"

 total COUNTER,!

 PRIMARY KEY (user, action)"

);"

"

UPDATE UserActions SET total = total + 2  
WHERE user = 123 AND action = ’xyz';"

Counter Considerations

©2014 DataStax. Do not distribute without consent. 40

Performance considerations
•  Read is as efficient as for non-counter columns
•  Update is fast but slightly slower than an update for non-counter

columns
•  A read is required before a write can be performed

Accuracy considerations
•  If a counter update is timed out, a client application cannot simply

retry a “failed” counter update as the timed-out update may have
been persisted

•  Counter update is not an idempotent operation

Static columns

©2014 DataStax. Do not distribute without consent. 41

 CREATE TABLE bills ("
 user text,"
 balance int static,"
 expense_id int,"
 amount int,"
 description text,"
 paid boolean,"
 PRIMARY KEY (user, expense_id)"
);"
"

Lightweight Transactions (LWT)

©2014 DataStax. Do not distribute without consent. @DataStaxEU 42

Why?
•  Solve a class of race conditions in Cassandra that you would otherwise need to install

an external locking manager to solve.

Syntax:
"INSERT INTO customer_account (customerID, customer_email)"

"VALUES (‘Johnny’, ‘jmiller@datastax.com’)  
"IF NOT EXISTS;!

"

"UPDATE customer_account "

"SET customer_email=’jmiller@datastax.com’"

!IF customer_email=’jmiller@datastax.com’;!

!

Example Use Case:
•  Registering a user

Lightweight Transactions

©2014 DataStax. Do not distribute without consent. @DataStaxEU 43

•  Uses Paxos algorthim
•  All operations are quorum-based i.e. we can loose nodes and its still going

to work!

•  See Paxos Made Simple - http://bit.ly/paxosmadesimple

•  Consequences of Lightweight Transactions
•  4 round trips vs. 1 for normal updates

•  Operations are done on a per-partition basis

•  Will be going across data centres to obtain consensus (unless you use
LOCAL_SERIAL consistency)

•  Cassandra user will need read and write access i.e. you get back the row!

Great for 1% your app, but eventual consistency is still your friend!
Find out more:
•  http://www.datastax.com/dev/blog/lightweight-transactions-in-cassandra-2-0
•  Eventual Consistency != Hopeful Consistency

http://www.youtube.com/watch?v=A6qzx_HE3EU

Batch Statements

©2014 DataStax. Do not distribute without consent. 44

BEGIN BATCH"

 INSERT INTO users (userID, password, name) VALUES ('user2', 'ch@ngem3b', 'second user')"

 UPDATE users SET password = 'ps22dhds' WHERE userID = 'user2'"

 INSERT INTO users (userID, password) VALUES ('user3', 'ch@ngem3c')"

 DELETE name FROM users WHERE userID = 'user2’"

APPLY BATCH;

•  BATCH statement combines multiple INSERT, UPDATE, and DELETE
statements into a single logical operation

•  Saves on client-server and coordinator-replica communication
•  Atomic operation

•  If any statement in the batch succeeds, all will

•  No batch isolation
•  Other “transactions” can read and write data being affected by a partially

executed batch

No semicolon after BEGIN BATCH! Fixed in 2.0.9

Batch Statements

©2014 DataStax. Do not distribute without consent. 45

BEGIN UNLOGGED BATCH
•  Does not write to the batchlog
•  More performant, but no longer atomic

BEGIN COUNTER BATCH
•  Only for counter mutations

Batch Statements

©2014 DataStax. Do not distribute without consent. 46

All conditions are applied to all changes to that partition

CREATE TABLE log ("
 log_name text,"
 seq int static,"
 logged_at timeuuid,"
 entry text,"
 primary key (log_name, logged_at)"
);"
"
INSERT INTO log (log_name, seq) "
VALUES ('foo', 0);"
"

Atomic log appends

©2014 DataStax. Do not distribute without consent. 47

BEGIN BATCH"
"
UPDATE log SET seq = 1"
WHERE log_name = 'foo'"
IF seq = 0;"
"
INSERT INTO log (log_name, logged_at, entry)"
VALUES ('foo', now(), 'test');"
"
APPLY BATCH;"

"
"

Secondary Indexes

©2014 DataStax. Do not distribute without consent. 48

•  This gives you fast access to data
•  If we want to do a query on a column that is not part of your PK,

you can create an index:
CREATE INDEX ON <table>(<column>);"

•  Can be created on any column except counter, static and
collection columns

•  Than you can do a select:
SELECT * FROM product WHERE type= ’PC';  

"
•  Avoid doing this for high volume queries!

•  Scatter/gather required
•  Much more efficient to model your data around the query

i.e. roll your own indexes!!

When do you want to use a secondary
index?

©2014 DataStax. Do not distribute without consent. 49

•  Secondary indexes are for searching convenience
•  Use with low-cardinality columns

•  Columns that may contain a relatively small set of distinct values

•  Use when prototyping, ad-hoc querying or with smaller datasets

•  Do not use
•  On high-cardinality columns

•  In tables that use a counter column

•  On a frequently updated or deleted column

•  To look for a row in a large partition
•  unless narrowly queried a search on both a partition key and an indexed

column

Keyword index example

©2014 DataStax. Do not distribute without consent. 50

Video table defined as:

CREATE TABLE videos ("

 videoid uuid,!

 videoname varchar,"

 username varchar,"

 description varchar,"

 tags varchar,"

 upload_date timestamp,"

 PRIMARY KEY(videoid)"

);"

Now we can define an index for tagging
videos
"

CREATE TABLE video_tag_index ("

 tag varchar,"

 videoid uuid,!

 timestamp timestamp"

 PRIMARY KEY(tag, videoid)"

);"

Partial word index example

©2014 DataStax. Do not distribute without consent. 51

Table:
CREATE TABLE email_index ("

"domain varchar,"

"user varchar,"

"username varchar,"

"PRIMARY KEY (domain, user)"

)  
"

User: jmiller, Email: jmiller@datastax.com

INSERT INTO email_index (domain, user, username) "

VALUES (‘@datastax.com’, ‘jmiller’, ‘jmiller’)"

Bitmap(ish) Index Example

©2014 DataStax. Do not distribute without consent. 52

•  Multiple parts to a key
•  Create a truth table of the various combinations
•  However, inserts == the number of combinations

Bitmap(ish) Index Example

©2014 DataStax. Do not distribute without consent. 53

Find a car in a car park by variable combinations

Bitmap(ish) index example

©2014 DataStax. Do not distribute without consent. 54

Make a table with three different key combinations
 
"

CREATE TABLE car_location_index ("

"make varchar,"

"model varchar,"

"colour varchar,"

"vehicle_id int,"

"lot_id int,"

"PRIMARY KEY ((make, mode, colour), vehicle_id)"

);"

Bitmap(ish) Index Example

©2014 DataStax. Do not distribute without consent. 55

We are pre-optimizing for 7 possible queries of the index on insert.
1.  INSERT INTO car_location_index (make, model, colour,

vehicle_id, lot_id)  
VALUES (‘Ford’, ‘Mustang’, ‘Blue’, 1234, 8675309);"

2.  INSERT INTO car_location_index (make, model, colour,
vehicle_id, lot_id)  
VALUES (‘Ford’, ‘Mustang’, ‘’, 1234, 8675309);"

3.  INSERT INTO car_location_index (make, model, colour,
vehicle_id, lot_id)  
VALUES (‘Ford’, ‘’, ‘Blue’, 1234, 8675309);"

4.  INSERT INTO car_location_index (make, model, colour,
vehicle_id, lot_id)  
VALUES (‘Ford’, ‘’, ‘’, 1234, 8675309);"

5.  INSERT INTO car_location_index (make, model, colour,
vehicle_id, lot_id)  
VALUES (‘’, ‘Mustang’, ‘Blue’, 1234, 8675309);"

6.  INSERT INTO car_location_index (make, model, colour,
vehicle_id, lot_id)  
VALUES (‘’, ‘Mustang’, ‘’, 1234, 8675309);"

7.  INSERT INTO car_location_index (make, model, colour,
vehicle_id, lot_id)  
VALUES (‘’, ‘’, ‘Blue’, 1234, 8675309);"

(Batched)

©2014 DataStax. Do not distribute without consent. 56

BEGIN BATCH"
INSERT INTO CARS (…) VALUES (…);"
INSERT INTO car_location_index (…)  
 VALUES (…);"
INSERT INTO car_location_index (…)  
 VALUES (…);"
…"
APPLY BATCH;"

Different Queries are now possible!

©2014 DataStax. Do not distribute without consent. 57

Don’t fear the writes

©2014 DataStax. Do not distribute without consent. 58

•  3 column index = 7 index rows per entry
•  4 columns = 15
•  5 columns = 31
•  6 columns = 63

DSE solr indexes

©2014 DataStax. Do not distribute without consent. 59

What is data modeling?

©2014 DataStax. Do not distribute without consent. 60

•  Data modeling is a process that involves
•  Collection and analysis of data requirements in an

information system
•  Identification of participating entities and relationships

among them
•  Identification of data access patterns
•  A particular way of organizing and structuring data
•  Design and specification of a database schema
•  Schema optimization and data indexing techniques

•  Data modeling = Science + Art

Key steps of data modeling for
Cassandra

©2014 DataStax. Do not distribute without consent. 61

•  Understand data and application queries
•  Data may or may not exist in some format (RDBMS, XML,

CSV, …)

•  Design tables

•  Design is based on access patterns or queries over data

•  Implement the design using CQL
•  Optimizations concerning data types, keys, partition sizes,

ordering

Cassandra modeling vs relational

©2014 DataStax. Do not distribute without consent. 62

Cassandra Relational
Precompute queries at write time
•  Optimizing for writes means we get

optimized reads for free

All data required to answer a query
must be nested in a table
•  Referential integrity is a non-issue

Data modeling methodology is driven
by queries and data
•  Data duplication is considered normal

(side effect of data nesting)

Recompute queries when read
•  Expensive JOIN and ORDER BY

Data from many relations is
combined to answer a query
•  Referential integrity is important

Data modeling is driven by data only
•  Data duplication is considered a

problem (normalization theory)

Exercise 2

Twissandra

©2014 DataStax. Do not distribute without consent. 63

Exercise 2

©2014 DataStax. Do not distribute without consent. 64

•  Users follow other users
•  Users read the tweets of the users they follow
•  [OPTIONAL] add tags to tweets table

CREATE TABLE friends ("

 follower text references users (username),"

 followed text references users (username)"

);"

"

SELECT * FROM tweets"

WHERE author IN"

 (SELECT followed FROM friends"

 WHERE follower = ?);"

Time Series/Sensor Data

©2014 DataStax. Do not distribute without consent. 65

What is time series data?

©2014 DataStax. Do not distribute without consent. 66

•  Sensors
•  CPU, Network Card, Electronic Power Meter, Resource

Utilization, Weather

•  Clickstream data
•  Historical trends
•  Stock Ticker
•  Anything that varies on a temporal basis
•  Top Ten Most Popular Videos

Table Definition

©2014 DataStax. Do not distribute without consent. 67

•  Data partitioned by source ID and time
•  Timestamp goes in the clustered column
•  Store the measurement as the non-clustered column(s)

CREATE TABLE temperature ("

"weatherstation_id text,"

"event_time timestamp,"

"temperature text"
"PRIMARY KEY (weatherstation_id, event_time) "

);"

Insert and Query Data

©2014 DataStax. Do not distribute without consent. 68

Simple to insert:
INSERT INTO temperature (weatherstation_id, event_time, temperature)"

VALUES (‘1234abcd’, ‘2013-12-11 07:01:00’, ‘72F’);"

"
"
"
Simple to query
SELECT temperature from temperature WHERE weatherstation_id=‘1234abcd’
AND event_time > ‘2013-04-03 07:01:00’ AND event_time < ‘2013-04-03
07:04:00’ "

Time Series Partitioning

©2014 DataStax. Do not distribute without consent. 69

•  With the previous table, you can end up with a very large row on 1
partition i.e. PRIMARY KEY (weatherstation_id, event_time)

•  This would have to fit on 1 node.
•  Cassandra can store 2 billion columns per storage row.

•  The solution is to have a composite partition key to split things up:
CREATE TABLE temperature ("

"weatherstation_id text,"

"date text,"

"event_time timestamp,"

"temperature text"
"PRIMARY KEY ((weatherstation_id, date),event_time) "

);"

Reverse Ordering

©2014 DataStax. Do not distribute without consent. 70

CREATE TABLE temperature ("

"weatherstation_id text,"

"date text,"

"event_time timestamp,"

"temperature text"

"PRIMARY KEY ((weatherstation_id, date),
event_time) "

) WITH CLUSTERING ORDER BY (event_time DESC);!

!

As part of the table definition, WITH CLUSTERING ORDER BY
(event_time DESC), is used to order the data by the most
recent first i.e. the data will be returned in this order.!

Rolling Storage

©2014 DataStax. Do not distribute without consent. 71

•  Common pattern for time series data is rolling storage.
•  For example, we only want to show the last 10 temperature

readings and older data is no longer needed
•  On most DBs you would need some background job to purge

the old data.
•  With Cassandra you can set a time-to-live and forget it
•  Combine that with the ordering of your data…….

Time Series TTL’ing

©2014 DataStax. Do not distribute without consent. 72

INSERT INTO temperature (weatherstation_id, date, event_time,
temperature) VALUES (‘1234abcd’, ‘2013-12-11’, ‘2013-12-11
07:01:00’, ‘72F’) USING TTL 20;"

•  This data point will automatically be deleted after 20 seconds.
•  Eventually you will see all the data disappear.

Exercise 3

Time series in Twissandra

©2014 DataStax. Do not distribute without consent. 73

Exercise 3

©2014 DataStax. Do not distribute without consent. 74

•  Suppose I follow 100,000 people on Twitter who
make 10 tweets per day

•  How would you change the timeline table to avoid
the large partition problem?

•  What changes in my queries would this require?

Example code

©2014 DataStax. Do not distribute without consent. 75

http://www.datastax.com/dev/blog/python-driver-
overview-using-twissandra

https://github.com/OpenNMS/newts

For more on data modeling…

©2014 DataStax. Do not distribute without consent. 76

Data modeling video series by Patrick McFadin

Part 1: The Data Model is Dead, Long Live the
Data Model
http://www.youtube.com/watch?v=px6U2n74q3g

Part 2: Become a Super Modeler
http://www.youtube.com/watch?v=qphhxujn5Es

Part 3: The World's Next Top Data Model
http://www.youtube.com/watch?v=HdJlsOZVGwM

