

ANDREW CLEGG @ BERLIN BUZZWORDS 2016

LEARNING TO RANK: WHERE SEARCH MEETS MACHINE LEARNING

2. Feature engineering

3. Model training with SVMs

4. LTR in production

1. Background & context

Background & context

SECTION 1

How does search relevance work?

- "purple hand woven unicorn hair sweater"
 - tfidf weights
 - hair **→** 0.25
 - hand **→** 0.09
 - purple \rightarrow 0.31 woven \Rightarrow 0.45
 - sweater \Rightarrow 0.28 unicorn \Rightarrow 0.69

ltem

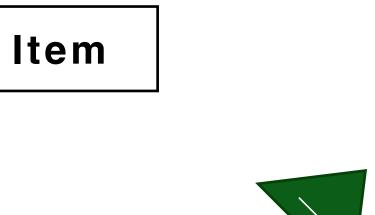
- hair **→** 0.25
- hand **→** 0.09
- purple \Rightarrow 0.31
- sweater \Rightarrow 0.28
- unicorn → 0.69
 - woven \Rightarrow 0.45

Query

- hair **⇒** 0.25
- hand **→** 0.09
- **purple ⇒** 0.31
- sweater ➡ 0.28
- unicorn ➡ 0.69
 - woven **⇒** 0.45

cosine similarity

hair = 0.00 hand = 0.00 purple = 2.35 sweater = 1.98 unicorn = 0.00 woven = 0.00



- hair **⇒** 0.25
- hand **→** 0.09
- purple ➡ 0.31
- sweater ➡ 0.28
- unicorn ➡ 0.69
 - woven **⇒** 0.45

Warning: horrible over-simplification!

cosine similarity

(title_score * 1.5) + (body_score * 1.0) + (comments_score * 0.25)

Documents with multiple fields

Non-textual boosts...

popularity: score * (num_clicks / num_impressions)

proximity to user: score / haversine_dist

age: score / (now - posting_date)

user favourited item: score * arbitrary_constant

... with some sensible scaling functions

- popularity: f(score, num_clicks, num_impressions)
 - proximity to user: f(score, haversine_dist)
 - age: f(score, now, posting_date)
- user favourited item: f(score, num_user_favourites)
- But these functions must still contain scaling constants.

How can we combine all these factors?

- f(title_score, body_score, comments_score, num_clicks, num_impressions, age, haversine_dist, num_user_favourites, user_favourited_this, ...)
 - Some depend on item, some on query, some on user.
 - How to combine meaningfully?
 - How to keep "magic numbers" up-to-date?

TREAT IT AS A MACHINE LEARNING PROBLEM.

Represent each item as a vector of features

Each feature has a name and value.

TITLE_hair ➡ 0.25, USER_CLICKED_BEFORE ➡ 1

Weighted sum of feature values gives relevance score.

But where do these weights come from?

weighted sum

TITLE_hair ➡ 0.25

ltem

- TITLE_hand → 0.09
- TITLE_purple → 0.31
- TITLE_sweater → 0.28
- USER_CLICKED → 1.00
 - AGE_YEARS → 0.10

TITLE_hair => +0.01 TITLE_hand => +0.03 TITLE_purple => +0.14 TITLE_sweater => +0.08 USER_CLICKED => +0.46 AGE_YEARS => -0.12

Query: "purple sweater"

ID62858 purple hand-woven unicorn-hair sweater **ID19846** blue sweater decorated with purple figments ID73956 purple yarn, ideal for making a sweater

Build a target ranking from historical data

ID78923 colourless green sweater with furious purple ideas

Query: "purple sweater"

ID62858 ← most clicked = most relevant ID78923 ... ID19846 ... ID73956 ← least clicked = least relevant

Build a target ranking from historical data

Query: "purple sweater"

ID62858 ← predicted ranking is correct ID19846 iD78923 iFAIL? ID73956 ← predicted ranking is correct

Trainer compares predicted ranking to target

Tweak weights in direction that improves ranking

Query: "purple sweater"

ID62858 ID78923 ID19846 ID73956

Warning: horrible over-simplification!

Rinse and repeat, until ranking accuracy stops improving.

Feature engineering

SECTION 2

- TITLE_blue \Rightarrow 0.24 (or 1.0) DESC_suede \Rightarrow 0.31 (or 1.0)
- TAXO_shoes \Rightarrow 0.16 (or 1.0)

LDA TOPIC 37 \rightarrow 0.67 LSI_TOPIC_12 → 0.19

Representing items as features

CLICK RATE \rightarrow 0.23 CONV_RATE \Rightarrow 0.02 **PRICE QUANTILE → 0.73**

DOC CLUSTER $3 \rightarrow 1.0$ **IMG_FEAT_17 → 0.86**

Example: "Images Don't Lie: Transferring Deep Visual Semantic Features to Large-Scale Multimodal Learning to Rank", Lynch et al., KDD 2016

How to include query context

- A model with only item features learns a 'global' score.
 - Easy option: use as modifier for TFIDF relevance.
 - score = f(ltr_score, lucene_score)
 - But this takes a step backwards.

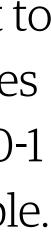
Modelling <query, item > pairs

- TITLE_blue \Rightarrow 0.24 (or 1.0)
- DESC_suede \Rightarrow 0.31 (or 1.0)
- TAXO_shoes \Rightarrow 0.16 (or 1.0)
 - CLICK RATE \Rightarrow 0.23
 - CONV RATE \rightarrow 0.02
 - PRICE QUANTILE → 0.73

 $QPOS_nn_adj \rightarrow 1.0$ **QCAT** footwear \rightarrow 1.0 **Q** ENTROPY \Rightarrow <u>5.34</u>

TFIDF TITLE → <u>**7.86**</u> BM25 DESC → <u>8.96</u>

Footnote: best to rescale features that aren't in O-1 range if possible.



QUERY_red:TITLE_scarlet => 1.0

Meaning: an item containing "scarlet" or "blue" appeared in results for a query containing "red".

Explicit query-item interactions

QUERY red:TITLE blue \rightarrow 1.0

Query-specific ranking models

- Or: train a separate model for each query in your logs.
 - (Or top-N most common queries.)
- Generally works well, assuming plenty of data for each.

Model training with SVMs

SECTION 3

Imagine we're classifying spam emails

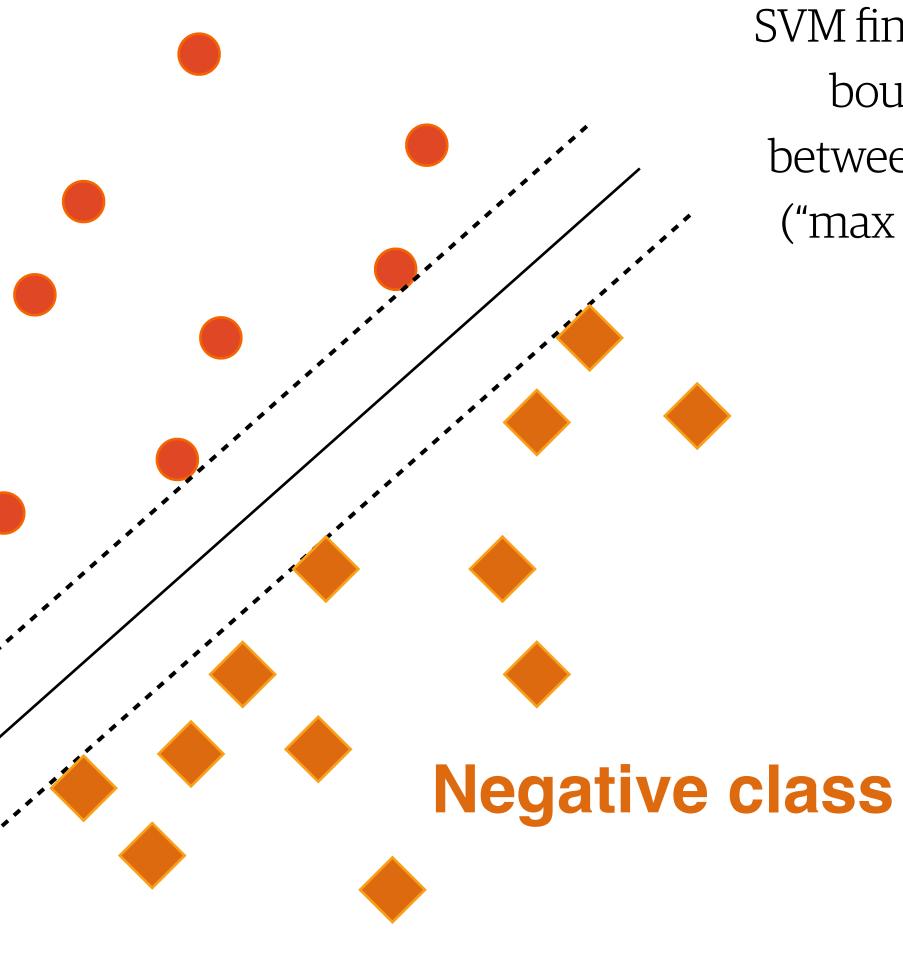
- $< mail 1 > \rightarrow +1$
- ... training instance 1 has been manually tagged as spam.
 - <email2> -> -1
 - ... training instance 2 has been tagged as not-spam.

Support Vector Machines for classification

Positive class

Dimension 1

Number of features in model = number of dimensions in "feature space"

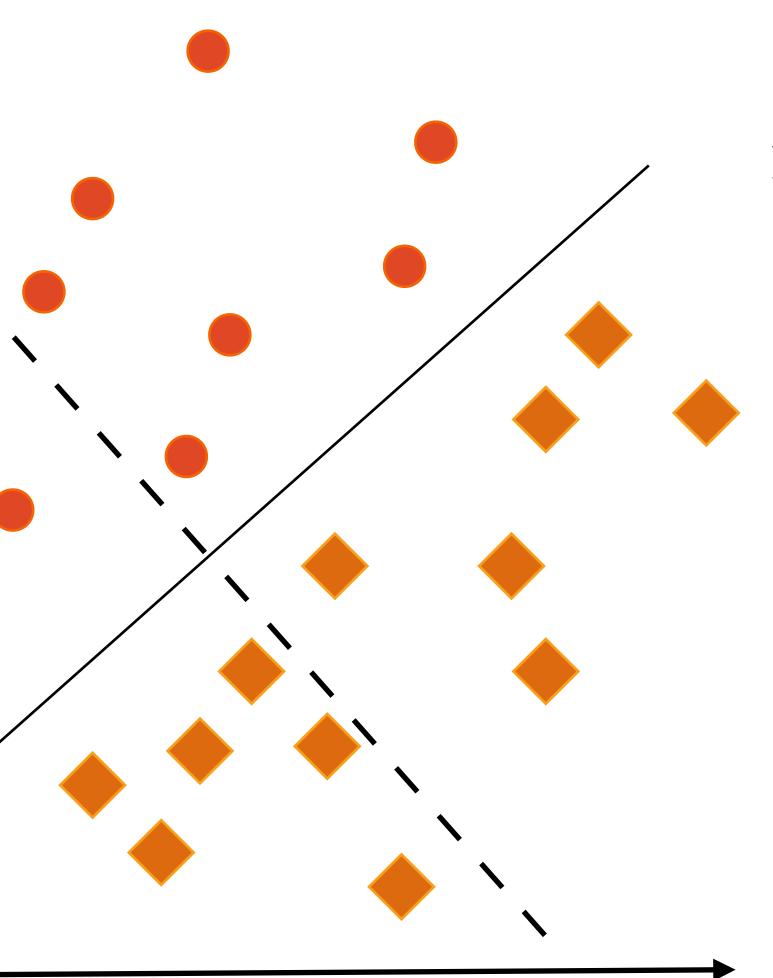


SVM finds best-fit boundary between classes ("max margin")

Dimension 2

Support Vector Machines for classification

Dimension 1

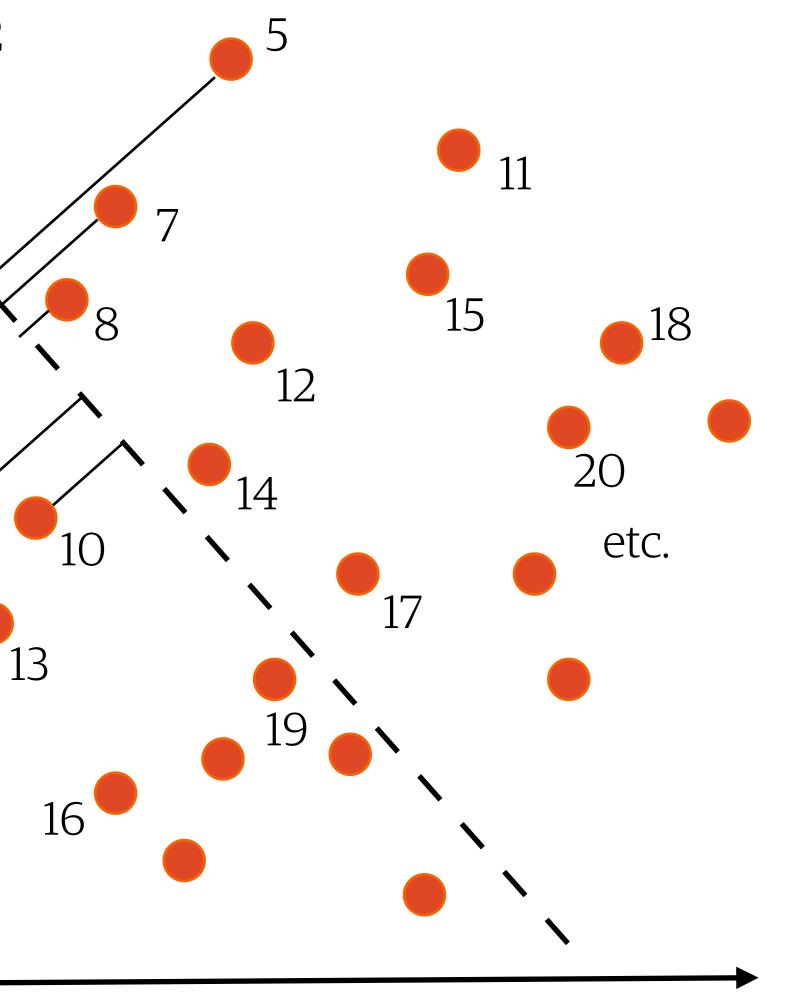


Model weights define a line perpendicular to this boundary

Dimension 2

Support Vector Machines for ranking?

Method first presented in "Optimizing Search Engines using Clickthrough Data", T. Joachims, KDD 2003



CONVERT YOUR RANKING PROBLEM INTO A CLASSIFICATION PROBLEM WITH THIS ONE WEIRD TRICK!

Converting to a classification problem

- Each training instance represents a pair of items from same set of search results in your logs.
 - <item1, item2>
- Learner must learn to order item1 and item2 correctly, with respect to user preference decisions found in your logs.

Classifiers need a class label

- ... if user preferred item1 (the winner) to item2 (the loser).
 - <item1, item2 $> \rightarrow -1$
 - ... if user preferred item2 to item1.

<item1, item2> → +1

Concentrate on *differences* between item features

- ... if user preferred item1 to item2.
- <differences_between_item1_and_item2> -> -1
 - ... if user preferred item2 to item1.

<differences_between_item1_and_item2> -> +1

Q. WHAT'S THE DIFFERENCE BETWEEN TWO VECTORS? A. LITERALLY JUST SUBTRACTION.

Subtract item2's features from item1's

item1

- TITLE_purple → 1.00
- TITLE_sweater → 1.00
 - TITLE_yarn ➡ 0.00
 - CLICK_RATE ➡ 0.23
 - CONV_RATE → 0.02
 - PRICE_QTILE → 0.73

TITLE_S TITLE_S TITLE CLICK_ CONV_ PRICE

- item2 item1_item2_diff
 - TITLE_purple ➡ +0.00
 - TITLE_sweater ➡ +1.00
 - TITLE_yarn ➡ –1.00
 - CLICK_RATE ⇒ +0.07
 - CONV_RATE → -0.03
 - PRICE_QTILE ➡ +0.34

- TITLE_purple → 1.00
- TITLE_sweater ➡ 0.00
 - TITLE_yarn ➡ 1.00
 - CLICK_RATE → 0.16
 - CONV_RATE → 0.05
 - PRICE_QTILE → 0.39



Train on these differences

item1_item2_diff

TITLE_sweater ⇒ +1.00 TITLE_yarn ⇒ -1.00 CLICK_RATE ⇒ +0.07 CONV_RATE ⇒ -0.03

PRICE_QTILE ➡ +0.34

label → +1

"Please learn that these feature differences are associated with item1 winning and item2 losing."

Train on these differences

item1_item2_diff

TITLE_sweater \Rightarrow +1.00 TITLE_yarn \Rightarrow -1.00 CLICK_RATE \Rightarrow +0.07 CONV_RATE \Rightarrow -0.03

PRICE_QTILE ➡ +0.34

label $\rightarrow -1$

"Please learn that these feature differences are associated with item2 winning and item1 losing."

Apply model to *individual* items

- Intuition:
- Item's score is *positively* affected by having features that are often found in the "winner" of a preference decision.
- It's *negatively* affected by having features that are often found in the "loser" of a preference decision.

weighted sum

TITLE_hair ➡ 0.25

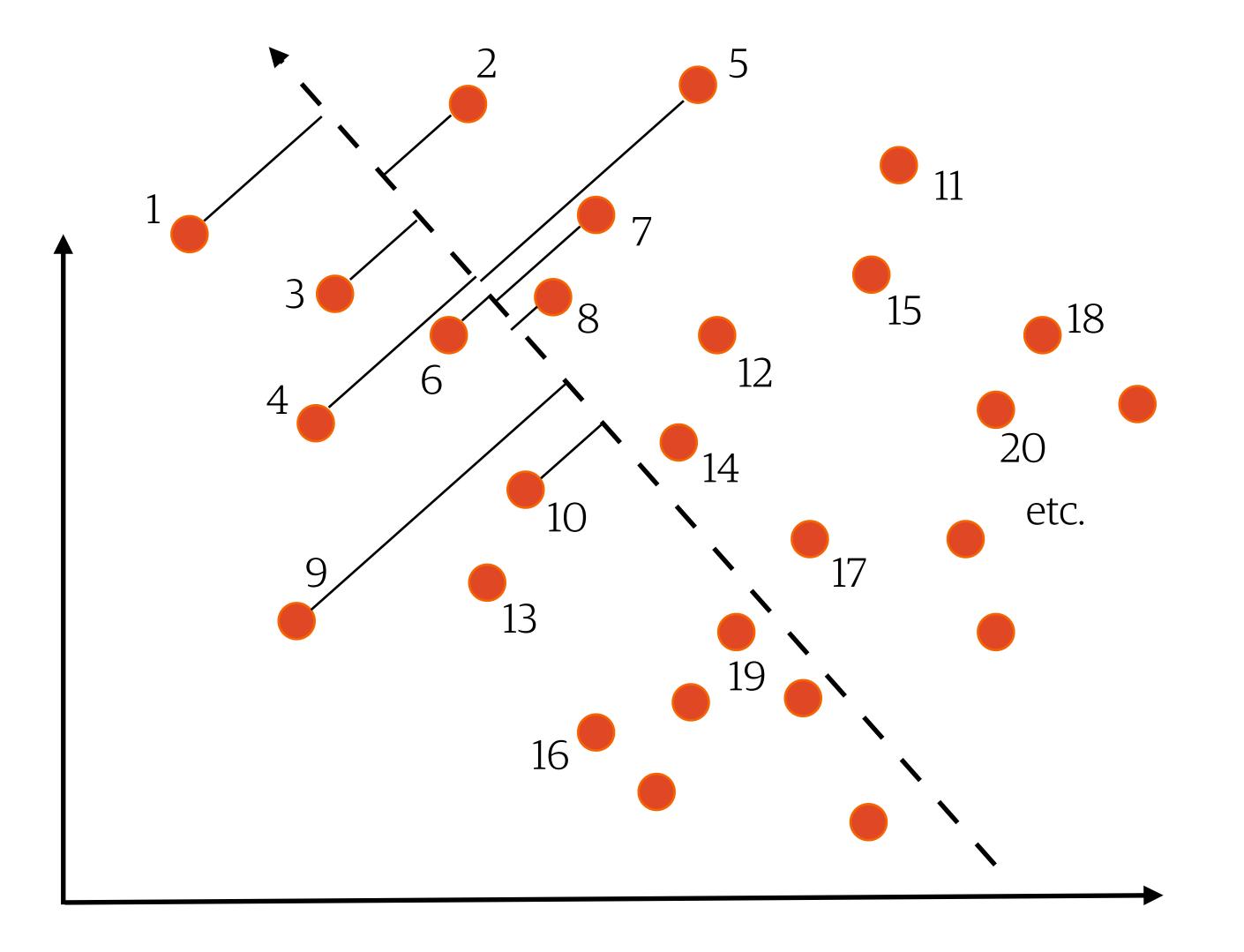
ltem

- TITLE_hand → 0.09
- TITLE_purple → 0.31
- TITLE_sweater → 0.28
- USER_CLICKED → 1.00
 - AGE_YEARS → 0.10

TITLE_hair => +0.01 TITLE_hand => +0.03 TITLE_purple => +0.14 TITLE_sweater => +0.08 USER_CLICKED => +0.46 AGE_YEARS => -0.12

Order by this score to reconstruct ranking

See also: "Large Scale Learning to Rank", D. Sculley, NIPS 2009 Workshop on Advances in Ranking

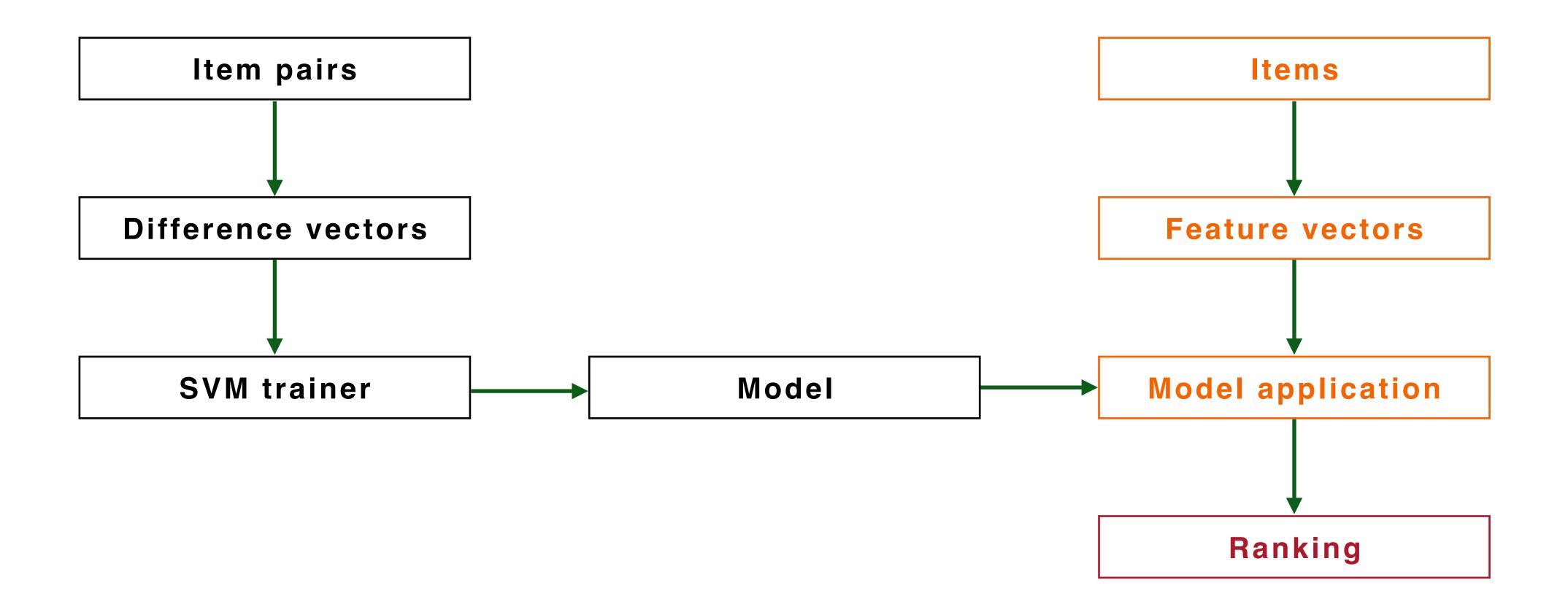


LTR in production

SECTION 4

WHEN AND WHERE SHOULD YOU CALCULATE THESE RANKING SCORES?

Precomputing them offline is simplest



Might be unfeasible for all items/all queries

Dynamic ranking when user runs query

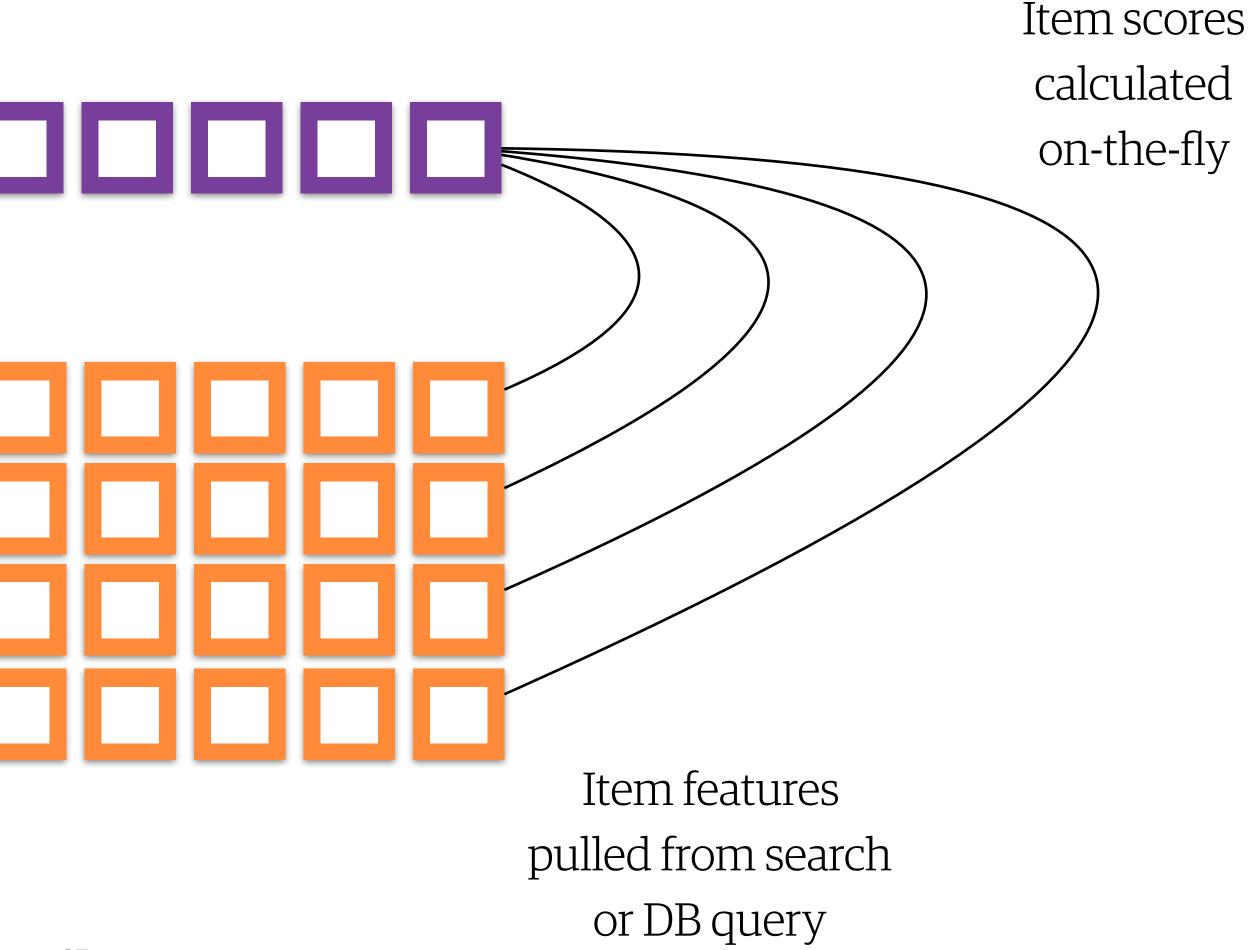
Model is cached in memory on server

model weights

"brunch"

Contextual features added by application layer: same for all items

item6258 item3946 item8043 item1456



See also "Learning to Rank" in Solr", Nilsson & Ceccarelli, Lucene/Solr Revolution 2015

Dynamic top-K reranking

- Get initial result set from simpler method:
 - e.g. traditional search query.
- Then build feature vectors and calculate scores for top results only. (Top 10, 100, 1000...)

Before

ID1375 rel_score=5.7 **ID8682 rel_score=5.2 ID9240 rel_score=5.0 ID4173 rel_score=4.6 ID8364 rel_score=4.1 ID4066 rel_score=3.5 ID9246 rel score=3.4**

After

ID9240 svm_score=1.0 ID1375 svm_score=0.9 ID8364 svm_score=0.8 ID8682 svm_score=0.7 **ID4173 svm score=0.6 ID4066** Top-K reranking: **ID9246** here K=5.

47

SOLVING THE RIGHT PROBLEM

Feedback loops and filter bubbles

- Make sure you're not just training your model to reinforce existing rankings.
 - New content needs to get a look-in.
- **Option:** introduce some level of randomization (carefully).
 - **Option: train on one product, apply on another.**

Removing position bias

- **Option: only consider "losers" that were ranked higher** than lowest click, when constructing training pairs.
- **Option:** include position as a feature in the model, then set to zero when applying the model.
 - **Option: randomly switch adjacent pairs of search results** to remove bias from training data.

Choosing the right target ranking

- Make sure the target ranking matches your business need.
 - Ranking by click alone might be fine for ad placement.
- In other contexts, consider taking dwell time or conversion into account. Or, disregard clickbacks and bounces.
 - A click alone is no guarantee of relevance.

Finer-grained target ranking

Article 78169 ← Articles which were often shared **Article 48016** Article 10945 ← Articles which were often read to end **Article 57297 Article 29169** Article 90188 ← Articles which were often clicked **Article 12974 Article 65902**

Further reading

Tie-Yan Liu

Learning to Rank for Information Retrieval

Thanks!

TWITTER: @ANDREW_CLEGG

ETSY.COM/CAREERS/