
Approaching Join Index
yet another one join algorithm

Mikhail Khludnev
principal engineer

PRIVILEGED AND CONFIDENTIAL

• Grid Dynamics is a Silicon Valley-based leading provider of scalable, next-generation
commerce technology solutions

• Record of outperformance with Tier 1 retail clients

• Fortune 1000 client relationships

About Me
● principal engineer at Grid Dynamics

● spoke at few last LuceneRevolutions

● contributed BlockJoin query parser for Solr - {!parent}

● blogged about it at http://blog.griddynamics.com/

● tried to fix threads at DataImportHandler

http://google.com/+MikhailKhludnev

http://blog.griddynamics.com/
http://google.com/+MikhailKhludnev
http://google.com/+MikhailKhludnev

You are expected to know
● how Lucene searches/filters

● how it counts facets

● that there are segments

● what is DocValues

● why to join

● RDBMS joins: nested loop join, sort-merge join and hash join.

I’m expected to know
● query-time join

● index-time join

● yet another one join

Lucene/Solr/Elastic Is Strong

● searching

○ filtering

● analytics

○ facets

○ pivots

○ stats

SKU_ID: 13
PROD_ID: 1
TYPE: SKU

SIZE: 8
COLOR:Blue

SKU_ID: 12
PROD_ID: 1
TYPE: SKU

SIZE: 8
COLOR:Green

There is a weakness

● robust joins

○ multiple entities

○ relations

PROD_ID: 1
TYPE: PROD

BRAND: Nike
NAME: Shoes
PRICE: $50

SKU_ID: 11
PROD_ID: 1
TYPE: SKU

SIZE: 7
COLOR: Black

Joins in General

Joins in General

Joins in General

PK=FK

Joins in General

PK=FK

Joins in General

PK=FK

children

Joins in General

1:M

parents

Executing Join Query

q

Executing Join Query

q

Executing Join Query

q

Executing Join Query

q
fq

Executing Join Query

q
fq

Join in General

parents ∩ join-relation ∩ children

JoinUtil

q

“25”

“17”

“17”

“25”

“25”
“56”

“56”

“56”

“25”

“4”

“61”

FK[doc#]

JoinUtil

q

FK[doc#]

“17”

“17”

“25”

“25”
“56”

“56”

“56”

“25”

“4”

“61”

“25”

“25”

“17”

...

JoinUtil

q

PK

“1” →△
…
“17”→△
“25”→△
...

“25”

“17”

...

“25”

“17”

“17”

“25”

“25”
“56”

“56”

“56”

“25”

“4”

“61”

FK[doc#]

JoinUtil

q

“1” →△
…
“17”→△
“25”→△
...

“25”

“17”

...

fq
“25”

“17”

“17”

“25”

“25”
“56”

“56”

“56”

“25”

“4”

“61”

FK[doc#]PK

Block Join
doc#

Block Join
doc#

4
3
2

Block Join
doc#1

0

0

1

0

0

1

0

0

1

0

Block Join
doc#1

0

0

1

0

0

1

0

0

1

0

q

Block Join
doc#1

0

0

1

0

0

1

0

0

1

0

q
fq

Block Join
doc#1

0

0

1

0

0

1

0

0

1

0

q
fq

Comparison

JoinUtil BlockJoin

searching slow fast

reindexing

Comparison

JoinUtil BlockJoin

searching slow fast

reindexing fast slow

Comparison
doc#

JoinUtil BlockJoin

searching slow fast

reindexing fast slow

Comparison
doc#

JoinUtil BlockJoin

searching slow fast

reindexing fast slow

Comparison
doc#

JoinUtil BlockJoin

searching slow fast

reindexing fast slow

Comparison

JoinUtil BlockJoin

searching slow < ? < fast

reindexing fast > ? > slow

Join Index

q

doc#[doc#]

3

6

0

3

10

0

6
3

Join Index

q

doc#[doc#]

3

6

0

3

10

0

6
3

Join Index

q

doc#[doc#]

fq 3

6

0

3

10

0

6
3

Join Index

q
fq

doc#[doc#]

2

4

1

6

5 10

9

8

Join Index

q

doc#[doc#]

fq

2

4

1

6

5 10

9

8

Join Index

q

doc#[doc#]

fq

2

4

1

6

5 10

9

8

meanwhile… in LUCENE-6352

GlobalOrdinalsQuery

“25”

“17”

“17”

“25”

“25”
“56”

“56”

“56”

“25”

“4”

“61”

SortedDocValues

GlobalOrdinalsQuery

“25”

“17”

“17”

“25”

“25”
“56”

“56”

“56”

“25”

“4”

“61”

SortedDocValues

0 “17”

1 “25”

2 “4”

3 “56”

4 “61”

Ordinals
0

0

1

1

3

3

3

1

2

4

1

GlobalOrdinalsQuery

q

0

0

1

1

3

3

3

1

2

4

1

1

1

0

0

0

fq

GlobalOrdinalsQuery

q

0

0

1

1

3

3

3

1

2

4

1

1

1

0

0

0

Benchmarking 2.9 M docs

https://github.com/m-khl/lucene-solr/tree/dvjoin-benchmark-5-1

Latency, ms
the bigger the worse

7

28

14

BlockJoin
(i-time)

Join Index

JoinUtil
(q-time)

GloblOrdinals

https://github.com/m-khl/lucene-solr/tree/dvjoin-benchmark-5-1
https://github.com/m-khl/lucene-solr/tree/dvjoin-benchmark-5-1

●

JoinUtil JoinIndex Global
Ordinals

Block
Join

searching slow fast fast faster
anyway

reindexing fast uber slow fast slow

<

doc#[doc#]
Indexing is still a problem

2

4
3

6

1
0
3

10

0

6
3

5 10

9

8

Further Plans 2.0
● incremental join-index update

● perhaps just calculate and cache it

● or put to dedicated index

● join in both directions

● calculate optimal execution plan of segments enumeration

● edge case for benchmark

Summary
● Joins in General

● JoinUtil vs Block-join vs GlobalOrdinals

● updatable DocValues

● opportunities for improving query-time joins:
○ eliminate term enum
○ choose lower cardinality side for enumeration
○ GlobalOrdinalsJoin

References
● Searching relational content with Lucene's BlockJoinQuery

http://blog.mikemccandless.com/
● Solr Experience: search parent-child relations. Part I

Solr block-join support
http://blog.griddynamics.com/

● https://wiki.apache.org/solr/Join
● http://www.slideshare.net/martijnvg/document-relations
● SOLR-6234 - {!scorejoin }
● LUCENE-6352

● Updatable DocValues Under the Hood
http://shaierera.blogspot.com/

● Subject: How to openIfChanged the most recent merge?
at: java-dev@lucene.apache.org

http://blog.mikemccandless.com/
http://blog.mikemccandless.com/
http://blog.griddynamics.com/2011/06/solr-experience-search-parent-child.html
http://blog.griddynamics.com/2011/06/solr-experience-search-parent-child.html
http://blog.griddynamics.com/2013/09/solr-block-join-support.html
http://blog.griddynamics.com/2013/09/solr-block-join-support.html
http://blog.griddynamics.com/
http://blog.griddynamics.com/
https://wiki.apache.org/solr/Join
https://wiki.apache.org/solr/Join
http://www.slideshare.net/martijnvg/document-relations
http://www.slideshare.net/martijnvg/document-relations
https://issues.apache.org/jira/browse/SOLR-6234
https://issues.apache.org/jira/browse/SOLR-6234
https://issues.apache.org/jira/browse/LUCENE-6352
https://issues.apache.org/jira/browse/LUCENE-6352
http://shaierera.blogspot.com/
http://shaierera.blogspot.com/

Thanks for Joining us!

https://goo.gl/hjsYZW

https://goo.gl/hjsYZW
https://goo.gl/hjsYZW

Off scope

Joins’ Zoo in Lucene
True Joins

● query-time join

○ JoinUtil

○ {!join }

○ {!scorejoin } - SOLR-6234

● index-time join aka block-join {!

parent}

Joins’ Zoo in Lucene
Workarounds

● term positions/SpanQueries

● FieldCollapsing/Grouping

● term decoration

○ spatial

● multivalue fields

True Joins
● query-time join

○ JoinUtil

○ {!join },

○ {!scorejoin } - SOLR-6234

● index-time join aka block-join {!

parent}

Joins’ Zoo in Lucene
Workarounds

● term positions/SpanQueries

● FieldCollapsing/Grouping

● term decoration

○ spatial

● multivalue fields

True Joins
● query-time join

○ JoinUtil

○ {!join },

○ {!scorejoin } - SOLR-6234

● index-time join aka block-join {!

parent}

Two phase update problem

Subject: How to openIfChanged the most recent merge?
at: java-dev@lucene.apache.org

JoinUtil
● query-time

● indexing is fast

● searching is slow, why?

○ expensive term enum

○ single enumeration order

BlockJoin
● index-time

● reindexing whole block is as expensive as mandatory

● searching is darn fast, however

○ can’t reorder child docs

store ref = segment#, doc#
put ref to previous and current segment in DV
when add new segment, join IDs with previous segments
- for parent, just ref to all children docnums
- for children, add plain field refsToSeg:seg#
-

when score parents on some segment
- buffer them with the link refs, then
- intersect buffered link refs with children query on previous segments
- search all segments for refsToSeg:seg#, intersect with children query, obtain

perent ref from DV intersect with buffered

