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PRIVILEGED AND CONFIDENTIAL

• Grid Dynamics is a Silicon Valley-based leading provider of scalable, next-generation 
commerce technology solutions

• Record of outperformance with Tier 1 retail clients

• Fortune 1000 client relationships

 



About Me
● principal engineer at Grid Dynamics

● spoke at few last LuceneRevolutions

● contributed BlockJoin query parser for Solr - {!parent}

● blogged about it at http://blog.griddynamics.com/

● tried to fix threads at DataImportHandler

http://google.com/+MikhailKhludnev

http://blog.griddynamics.com/
http://google.com/+MikhailKhludnev
http://google.com/+MikhailKhludnev


You are expected to know
● how Lucene searches/filters

● how it counts facets

● that there are segments

● what is DocValues

● why to join

● RDBMS joins: nested loop join, sort-merge join and hash join.



I’m expected to know
● query-time join

● index-time join 

● yet another one join



Lucene/Solr/Elastic Is Strong

● searching 

○ filtering

● analytics

○ facets

○ pivots

○ stats
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There is a weakness

● robust joins

○ multiple entities 

○ relations
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Join in General

parents ∩ join-relation ∩ children
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Comparison

JoinUtil BlockJoin

searching slow < ? < fast

reindexing fast > ? > slow
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meanwhile… in LUCENE-6352
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Benchmarking 2.9 M docs

https://github.com/m-khl/lucene-solr/tree/dvjoin-benchmark-5-1

Latency, ms  
the bigger the worse 
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●

JoinUtil JoinIndex Global
Ordinals

Block
Join

searching slow fast fast faster
anyway

reindexing fast uber slow fast slow

<
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Further Plans 2.0
● incremental join-index update

● perhaps just calculate and cache it 

● or put to dedicated index

● join in both directions 

● calculate optimal execution plan of segments enumeration

● edge case for benchmark



Summary
● Joins in General

● JoinUtil vs Block-join vs GlobalOrdinals

● updatable DocValues

● opportunities for improving query-time joins:
○ eliminate term enum
○ choose lower cardinality side for enumeration
○ GlobalOrdinalsJoin



References
● Searching relational content with Lucene's BlockJoinQuery

http://blog.mikemccandless.com/
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● https://wiki.apache.org/solr/Join
● http://www.slideshare.net/martijnvg/document-relations
● SOLR-6234  - {!scorejoin }
● LUCENE-6352 

● Updatable DocValues Under the Hood
http://shaierera.blogspot.com/
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at: java-dev@lucene.apache.org 
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Thanks for Joining us!

https://goo.gl/hjsYZW
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https://goo.gl/hjsYZW


Off scope



Joins’ Zoo in Lucene 
True Joins

● query-time join

○ JoinUtil

○ {!join } 

○ {!scorejoin } - SOLR-6234

● index-time join aka block-join {!

parent}
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Two phase update problem

Subject: How to openIfChanged the most recent merge?
at: java-dev@lucene.apache.org 



JoinUtil
● query-time

● indexing is fast

● searching is slow, why?

○ expensive term enum

○ single enumeration order

BlockJoin
● index-time

● reindexing whole block is as expensive as mandatory

● searching is darn fast, however

○ can’t reorder child docs



store ref = segment#, doc#
put ref to previous and current segment in DV
when add new segment, join IDs with previous segments
- for parent, just ref to all children docnums
- for children, add plain field refsToSeg:seg#
-

when score parents on some segment
- buffer them with the link refs, then 
- intersect buffered link refs with children query on previous segments
- search all segments for refsToSeg:seg#, intersect with children query, obtain 

perent ref from DV intersect with buffered  


