


Parallel SQL and Streaming Expressions in 
Apache Solr 6

Shalin Shekhar Mangar 
@shalinmangar 
Lucidworks Inc.



Introduction

• Shalin Shekhar Mangar 

• Lucene/Solr Committer 

• PMC Member 

• Senior Solr Consultant with Lucidworks Inc.



The standard 
for enterprise 
search.

of Fortune 500 
uses Solr.

90%



• Full text search (Info Retr.) 

• Facets/Guided Nav galore! 

• Lots of data types 

• Spelling, auto-complete, 
highlighting 

• Cursors 

• More Like This 

• De-duplication

• Apache Lucene 

• Grouping and Joins 

• Stats, expressions, transformations 
and more 

• Lang. Detection 

• Extensible 

• Massive Scale/Fault tolerance

Solr Key Features



Why SQL

• Simple, well-known interface to data inside Solr 

• Hides the complexity of Solr and its various features 

• Possible to optimise the query plan according to best-practices 
automatically 

• Distributed Joins done simply and well



Solr 6: Parallel SQL

• Parallel execution of SQL across SolrCloud collections 

• Compiled to SolrJ Streaming API (TupleStream) which is a general 
purpose parallel computing framework for Solr 

• Executed in parallel over SolrCloud worker nodes 

• SolrCloud collections are relational ‘tables’ 

• JDBC thin client as a SolrJ client



Solr’s SQL Interface



SQL Interface at a glance

• SQL over Map/Reduce — for high cardinality aggregations and 
distributed joins 

• SQL over Facets — high performance, moderate cardinality 
aggregations 

• SQL with Solr powered search queries 

• Fully integrated with SolrCloud 

• SQL over JDBC or HTTP — http://host:port/solr/collection1/sql

http://host:port/solr/collection1/sql


Limited vs Unlimited SELECT

• select movie, director from IMDB 

Returns the entire result set! Return fields must be DocValues 

• select movie, directory from IMDB limit 100 

Returns specified number of records. It can sort by score and 
retrieve any stored field 

• select movie, director from IMDB order by rating desc, num_voters 
desc



Search predicates

• select movie, director from IMDB where actor = ‘bruce’ 

• select movie, director from IMDB where actor = ‘(bruce tom)’ 

• select movie, director from IMDB where rating = ‘[8 TO *]’ 

• select movie, director from IMDB where (actor = ‘(bruce tom)’ AND 
rating = ‘[8 TO *]’) 

Search predicates are Solr queries specified inside single-quotes 

Can specify arbitrary boolean clauses



Select DISTINCT

• select distinct actor_name from IMDB 

• Map/Reduce implementation — Tuples are shuffled to worker 
nodes and operation is performed by workers 

• JSON Facet implementation — operation is ‘pushed down’ to Solr



Stats aggregations

• select count(*), sum(num_voters) from IMDB 

• Computed using Solr’s StatsComponent under the hood 

• count, sum, avg, min, max are the supported aggregations 

• Always pushed down into the search engine



GROUP BY Aggregations

• select actor_name, director, count(*), sum(num_voters) from IMDB 
group by actor_name, director having count(*) > 5 and 
sum(num_voters) > 1000 order by sum(num_voters) desc 

• Has a map/reduce implementation (shuffle) and a JSON Facet 
implementation (push down) 

• Multi-dimensional, high cardinality aggregations are possible with 
the map/reduce implementation





JDBC

• Part of SolrJ 

• SolrCloud Aware Load Balancing 

• Connection has ‘aggregationMode’ parameter that can switch 
between map_reduce or facet 

• jdbc:solr://SOLR_ZK_CONNECTION_STRING?
collection=COLLECTION_NAME&aggregationMode=facet



Inside Parallel SQL



Solr’s Parallel Computing Framework

• Streaming API 

• Streaming Expressions 

• Shuffling 

• Worker collections 

• Parallel SQL



Streaming API

• Java API for parallel computation 

• Real-time Map/Reduce and Parallel Relational Algebra 

• Search results are streams of tuples (TupleStream) 

• Transformed in parallel by Decorator streams 

• Transformations include group by, rollup, union, intersection, 
complement, joins 

• org.apache.solr.client.solrj.io.*



Streaming API

• Streaming Transformation 

Operations that transform the underlying streams e.g. unique, 
group by, rollup, union, intersection, complement, join etc 

• Streaming Aggregation 

Operations that gather metrics and compute aggregates e.g. sum, 
count, average, min, max etc



Streaming Expressions

• String Query Language and Serialisation format for the Streaming 
API 

• Streaming expressions compile to TupleStream 

• TupleStream serialise to Streaming Expressions 

• Human friendly syntax for Streaming API accessible to non-Java 
folks as well 

• Can be used directly via HTTP to SolrJ



Streaming Expressions



Streaming Expressions

• Stream Sources 

The origin of a TupleStream 

search, jdbc, facet, stats, topic 

• Stream Decorators 

Wrap other stream functions and perform operations on the stream 

complement, hashJoin, innerJoin, merge, intersect, top, unique 

• Many streams can be paralleled across worker collections



Shuffling

• Shuffling is pushed down to Solr 

• Sorting is done by /export handler which stream-sorts entire result sets 

• Partitioning is done by HashQParserPlugin which is a filter that 
partitions on arbitrary fields 

• Tuples (search results) start streaming instantly to worker nodes never 
requiring a spill to the disk. 

• All replicas shuffle in parallel for the same query which allows for 
massively parallel IO and huge throughputs.



Worker collections

• Regular SolrCloud collections 

• Perform streaming aggregations using the Streaming API 

• Receive shuffled streams from the replicas 

• Over an HTTP endpoint: /stream 

• May be empty or created just-in-time for specific analytical queries 
or have data as any regular SolrCloud collection 

• The goal is to separate processing from data if necessary



Parallel SQL

• The Presto parser compiles SQL to a TupleStream 

• TupleStream is serialised to a Streaming Expression and sent over 
the wire to worker nodes 

• Worker nodes convert the Streaming Expression back into a 
TupleStream 

• Worker nodes open() and read() the TupleStream in parallel





What’s next



Graph traversals via 
streaming expressions

• Shortest path 

• Node walking/gathering 

• Distributed Gremlin 
implementation



Machine learning 
models

• LogisticRegressionQuery 

• LogitStream 

• More to come



Take actions based on 
AI driven alerts

• DaemonStreams 

• AlertStream 

• ModelStream



More, more, more!

• UpdateStream 

• Publish-subscribe 

• Calcite integration 

• Better JDBC support



References

• Joel Bernstein’s Blog — http://joelsolr.blogspot.in/ 

• https://cwiki.apache.org/confluence/display/solr/Streaming+Expressions 

• https://cwiki.apache.org/confluence/display/solr/Parallel+SQL+Interface 

• Parallel SQL by Joel Bernstein — https://www.youtube.com/watch?
v=baWQfHWozXc 

• Streaming Aggregations by Erick Erickson — https://www.youtube.com/
watch?v=n5SYlw0vSFw

http://joelsolr.blogspot.in/
https://cwiki.apache.org/confluence/display/solr/Streaming+Expressions
https://cwiki.apache.org/confluence/display/solr/Parallel+SQL+Interface
https://www.youtube.com/watch?v=baWQfHWozXc
https://www.youtube.com/watch?v=n5SYlw0vSFw


Thank you 
shalin@apache.org 

@shalinmangar

mailto:shalin@apache.org

